首页> 外文期刊>Neurocomputing >A robust ensemble approach to learn from positive and unlabeled data using SVM base models
【24h】

A robust ensemble approach to learn from positive and unlabeled data using SVM base models

机译:强大的集成方法,可使用SVM基本模型从阳性和未标记数据中学习

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach to learn binary classifiers when only positive and unlabeled instances are available (PU learning). This problem is routinely cast as a supervised task with label noise in the negative set. We use an ensemble of SVM models trained on bootstrap resamples of the training data for increased robustness against label noise. The approach can be considered in a bagging framework which provides an intuitive explanation for its mechanics in a semi-supervised setting. We compared our method to state-of-the-art approaches in simulations using multiple public benchmark data sets. The included benchmark comprises three settings with increasing label noise: (i) fully supervised, (ii) PU learning and (iii) PU learning with false positives. Our approach shows a marginal improvement over existing methods in the second setting and a significant improvement in the third. (C) 2015 Elsevier B.V. All rights reserved.
机译:当只有肯定的和未标记的实例可用时(PU学习),我们提出了一种学习二进制分类器的新颖方法。通常将此问题视为带有负噪声的标签噪声的监督任务。我们使用在训练数据的引导程序重采样上训练的SVM模型的整体,以提高针对标签噪声的鲁棒性。可以在装袋框架中考虑该方法,该框架为半监督环境下的机械原理提供了直观的解释。我们将我们的方法与使用多个公共基准数据集进行仿真的最新方法进行了比较。包含的基准包括三个设置,这些设置会增加标签噪音:(i)受到完全监督,(ii)PU学习和(iii)带有误报的PU学习。我们的方法在第二种设置中显示了对现有方法的边际改进,而在第三种设置中则显示了显着改进。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第21期|73-84|共12页
  • 作者单位

    Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, iMinds Med IT, B-3001 Leuven, Belgium;

    Katholieke Univ Leuven, Dept Publ Hlth & Primary Care Environm & Hlth, B-3001 Leuven, Belgium;

    Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, iMinds Med IT, B-3001 Leuven, Belgium;

    Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, iMinds Med IT, B-3001 Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Classification; Semi-supervised learning; Ensemble learning; Support vector machine;

    机译:分类;半监督学习;集合学习;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号