首页> 外文期刊>Neurocomputing >Combinative hypergraph learning for semi-supervised image classification
【24h】

Combinative hypergraph learning for semi-supervised image classification

机译:组合超图学习用于半监督图像分类

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed a surge of interest in hypergraph-based transductive image classification. Hypergraph-based transductive learning models the high-order relationship of samples by using a hyperedge to link multiple samples. In order to extend the high-order relationship of samples, we incorporate linear correlation of sparse representation to hypergraph learning framework to improve learning performance. In this paper, we present a new transductive learning method called combinative hypergraph learning (CHL). CHL captures the similarity between two samples in the same category by adding sparse hypergraph learning to conventional hypergraph learning. And more, we propose two strategies to combine the two hypergraph learning methods. Experimental results on two image datasets have demonstrated the effectiveness of CHL in comparison to the state-of-the-art methods and shown that our proposed method is promising.
机译:近年来,目睹了对基于超图的转导图像分类的兴趣激增。基于超图的转换学习通过使用超边链接多个样本来建模样本的高阶关系。为了扩展样本的高阶关系,我们将稀疏表示的线性相关性合并到超图学习框架中以提高学习性能。在本文中,我们提出了一种新的跨导学习方法,称为组合超图学习(CHL)。通过将稀疏超图学习添加到常规超图学习中,CHL捕获了同一类别中两个样本之间的相似性。此外,我们提出了两种结合两种超图学习方法的策略。在两个图像数据集上的实验结果证明了CHL与最新方法相比的有效性,并表明我们提出的方法很有希望。

著录项

  • 来源
    《Neurocomputing》 |2015年第4期|271-277|共7页
  • 作者单位

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China,College of Applied Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China;

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China;

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China;

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China,Faculty of Environment, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image classification; Transductive learning; Hypergraph learning; spaRse representation;

    机译:图像分类;转换学习;超图学习;稀疏表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号