首页> 外文期刊>Image Processing, IEEE Transactions on >Elastic Net Hypergraph Learning for Image Clustering and Semi-Supervised Classification
【24h】

Elastic Net Hypergraph Learning for Image Clustering and Semi-Supervised Classification

机译:用于图像聚类和半监督分类的弹性网超图学习

获取原文
获取原文并翻译 | 示例

摘要

Graph model is emerging as a very effective tool for learning the complex structures and relationships hidden in data. In general, the critical purpose of graph-oriented learning algorithms is to construct an informative graph for image clustering and classification tasks. In addition to the classical K -nearest-neighbor and r -neighborhood methods for graph construction, l1 -graph and its variants are emerging methods for finding the neighboring samples of a center datum, where the corresponding ingoing edge weights are simultaneously derived by the sparse reconstruction coefficients of the remaining samples. However, the pairwise links of l1 -graph are not capable of capturing the high-order relationships between the center datum and its prominent data in sparse reconstruction. Meanwhile, from the perspective of variable selection, the l1 norm sparse constraint, regarded as a LASSO model, tends to select only one datum from a group of data that are highly correlated and ignore the others. To simultaneously cope with these drawbacks, we propose a new elastic net hypergraph learning model, which consists of two steps. In the first step, the robust matrix elastic net model is constructed to find the canonically related samples in a somewhat greedy way, achieving the grouping effect by adding the l2 penalty to the l1 constraint. In the second step, hypergraph is used to represent the high order relationships between each datum and its prominent samples by regarding them as a hyperedge. Subsequently, hypergraph Laplacian matrix is constructed for further analysis. New hypergraph learning algorithms, including unsupervised clustering and multi-class semi-supervised classification, are then derived. Extensive experiments on face and handwriting databases demonstrate the effectiveness of the proposed method.
机译:图模型正在成为一种非常有效的工具,用于学习隐藏在数据中的复杂结构和关系。通常,面向图的学习算法的关键目的是为图像聚类和分类任务构造一个信息图。除了经典的K-近邻法和r-邻域法用于图构建外,l1-graph及其变体是新兴的方法,用于查找中心基准面的相邻样本,其中稀疏同时导出了相应的传入边缘权重其余样本的重建系数。但是,在稀疏重建中,l1-graph的成对链接无法捕获中心数据与其突出数据之间的高阶关系。同时,从变量选择的角度来看,被认为是LASSO模型的l1范式稀疏约束倾向于从一组高度相关的数据中仅选择一个数据,而忽略其他数据。为了同时克服这些缺点,我们提出了一个新的弹性网超图学习模型,该模型包括两个步骤。第一步,构建鲁棒矩阵弹性网模型,以某种贪婪的方式找到规范相关的样本,通过将l2惩罚加到l1约束上来实现分组效果。在第二步中,超图用于通过将每个基准与其突出样本之间的高阶关系视为超边缘来表示它们。随后,构建了超图拉普拉斯矩阵以进行进一步分析。然后推导了新的超图学习算法,包括无监督聚类和多类半监督分类。在面部和手写数据库上的大量实验证明了该方法的有效性。

著录项

  • 来源
    《Image Processing, IEEE Transactions on》 |2017年第1期|452-463|共12页
  • 作者单位

    Jiangsu Key Laboratory of Big Data Analysis Technology, CICAEET, Nanjing University of Information Science and Technology, Nanjing, China;

    Jiangsu Key Laboratory of Big Data Analysis Technology, CICAEET, Nanjing University of Information Science and Technology, Nanjing, China;

    Nanjing Technical Vocational College, Nanjing, China;

    Centre for Artificial Intelligence and the Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia;

    Centre for Artificial Intelligence and the Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image reconstruction; Data models; Robustness; Laplace equations; Semisupervised learning; Image edge detection;

    机译:图像重建;数据模型;稳健性;拉普拉斯方程;半监督学习;图像边缘检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号