首页> 外文期刊>Neurocomputing >A negative selection algorithm with online adaptive learning under small samples for anomaly detection
【24h】

A negative selection algorithm with online adaptive learning under small samples for anomaly detection

机译:小样本下在线自适应学习的负选择算法用于异常检测

获取原文
获取原文并翻译 | 示例

摘要

The training stage and testing stage of traditional negative selection algorithm (NSA) are mutually independent, and NSA lacks continuous learning ability. Its detector cannot completely cover the non-self space. A new NSA with online adaptive learning under small training samples, OALI-detector, was proposed in this paper. Ⅰ-detector can fully separate the self space from the non-self space with an appropriate self radius. It can adapt itself to real-time change of self space during the testing stage. The experimental comparison among I-detector, V-detector, and other anomaly detection algorithms in two artificial and Iris datasets shows that the I-detector can obtain the highest detection rate in most cases. The experimental comparison between OALI-detector and V-detector on Iris datasets shows that when overfitting does not occur, the OALI-detector can obtain the highest and lowest false alarm rates, even if only one self sample is used for training.
机译:传统的负面选择算法(NSA)的训练阶段和测试阶段是相互独立的,并且NSA缺乏持续的学习能力。它的检测器无法完全覆盖非自身空间。本文提出了一种新的具有较小训练样本的在线自适应学习能力的NSA,即OALI检测器。 Ⅰ型探测器可以通过适当的自身半径将自身空间与非自身空间完全分开。它可以在测试阶段适应自身空间的实时变化。在两个人工和虹膜数据集中对I-探测器,V-探测器和其他异常检测算法进行的实验比较表明,在大多数情况下,I-探测器可以获得最高的检测率。在虹膜数据集上的OALI检测器和V检测器之间的实验比较表明,即使不会发生过度拟合,即使仅使用一个自我样本进行训练,OALI检测器也可以获得最高和最低的误报率。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptab期|515-525|共11页
  • 作者单位

    School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China,School of Petroleum Engineering, Changzhou University, Changzhou 213164, China;

    School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China;

    School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial immune system; Negative selection algorithm; Anomaly detection; Interface detector; Online adaptive learning;

    机译:人工免疫系统;负选择算法;异常检测;接口检测器;在线自适应学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号