首页> 外文期刊>Neurocomputing >Adaptive time-window length based on online performance measurement in SSVEP-based BCIs
【24h】

Adaptive time-window length based on online performance measurement in SSVEP-based BCIs

机译:基于SSVEP的BCI中基于在线性能测量的自适应时间窗口长度

获取原文
获取原文并翻译 | 示例

摘要

In the steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCIs), the time-window length plays an important role as it controls how much data is used each time in signal processing and classification for target detection. Normally, the larger the time-window length, the higher the detection accuracy and the longer the detection time, while the overall performance of a BCI system involves a trade-off between the detection accuracy and the detection time. An optimal time-window length is thus preferred but unfortunately such a value varies considerably among different subjects. This paper proposes an adaptive method to optimize the time-window length based on the subject's online performance. More specifically, a feedback from the subject using two commands, "Undo" and "Delete", is designed to assess the performance in real time. Based on the assessment, the adaptive mechanism decides whether to change or maintain the time-window length. The proposed system was tested on 7 subjects, with on average an accuracy of 98.42% and an information transfer rate (ITR) of 70.71 bits/min, representing an ITR improvement of 19.36% compared to its non-adaptive counterpart.
机译:在基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中,时间窗口长度起着重要作用,因为它控制着每次在信号处理和目标检测分类中使用多少数据。通常,时间窗口长度越大,检测精度越高,检测时间越长,而BCI系统的整体性能需要在检测精度和检测时间之间进行权衡。因此,最佳的时间窗口长度是优选的,但是不幸的是,该值在不同的对象之间变化很大。本文提出了一种基于对象的在线表现来优化时间窗口长度的自适应方法。更具体地,使用两个命令“撤消”和“删除”从受试者的反馈旨在实时评估性能。基于评估,自适应机制决定是否更改或维持时间窗口长度。该系统在7个对象上进行了测试,平均准确度为98.42%,信息传输率(ITR)为70.71位/分钟,与非自适应系统相比,ITR提升了19.36%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号