首页> 外文期刊>Knowledge-Based Systems >An adaptive optimal-Kernel time-frequency representation-based complex network method for characterizing fatigued behavior using the SSVEP-based BCI system
【24h】

An adaptive optimal-Kernel time-frequency representation-based complex network method for characterizing fatigued behavior using the SSVEP-based BCI system

机译:使用基于SSVEP的BCI系统来表征疲劳行为的基于自适应最优核时频表示的复杂网络方法

获取原文
获取原文并翻译 | 示例

摘要

The Steady State Visual Evoked Potential (SSVEP)-based Brain Computer Interface (BCI) system has seen extensively applications in many fields, such as physical recovery of handicap persons, obstacle avoidance of intelligent vehicles, entertainment and smart homes. However, subjects easily get fatigued because of the involving long-time operations. The presence of fatigue symptoms typically affect the efficiency of the BCI system, so investigating the effects of fatigue on the SSVEP classification accuracy from the perspective of brain network becomes a challenging issue of significant importance. In this paper, we develop an adaptive optimal-Kernel time-frequency representation (AOK-TFR)-based complex network method for characterizing fatigued behavior using the SSVEP-based BCI system. We apply the traditional Canonical Correlation Analysis (CCA) and Fisher Linear Discriminant Analysis (FLDA) to classify SSVEP signals. We find that the classification accuracy at the fatigue states is significantly lower than that at the normal states. To reveal the reasons, we infer and analyze the AOK-TFR-based functional brain network with SSVEP signals. In particular, we calculate the AOK-TFR of the acquired 30-channel SSVEP signals under both normal and fatigue conditions and then construct a brain network in terms of the two-norm distance between different channels. Our results suggest that the small-world-ness of the network at normal states is prominent, and the main brain regions associated with SSVEP are in the prefrontal cortex and occipital lobe. Our analysis sheds new insights into the understanding and management of the fatigued behavior using the SSVEP-based BCI system. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于稳态视觉诱发电位(SSVEP)的脑计算机接口(BCI)系统已在许多领域得到了广泛的应用,例如残障人士的身体康复,智能车辆的避障,娱乐和智能家居。但是,由于涉及长时间的操作,受试者容易疲劳。疲劳症状的出现通常会影响BCI系统的效率,因此,从大脑网络的角度研究疲劳对SSVEP分类准确性的影响已成为具有重要意义的挑战性问题。在本文中,我们开发了一种基于自适应最优核时频表示(AOK-TFR)的复杂网络方法,用于使用基于SSVEP的BCI系统来表征疲劳行为。我们应用传统的规范相关分析(CCA)和Fisher线性判别分析(FLDA)对SSVEP信号进行分类。我们发现疲劳状态下的分类精度明显低于正常状态下的分类精度。为了揭示原因,我们用SSVEP信号推断并分析了基于AOK-TFR的功能性大脑网络。特别是,我们在正常和疲劳条件下计算获取的30通道SSVEP信号的AOK-TFR,然后根据不同通道之间的两个范数距离构建大脑网络。我们的研究结果表明,正常状态下网络的小世界性突出,与SSVEP相关的主要大脑区域位于前额叶皮层和枕叶。我们的分析为基于SSVEP的BCI系统对疲劳行为的理解和管理提供了新的见解。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号