首页> 外文期刊>Neurocomputing >Projective dictionary pair learning for EEG signal classification in brain computer interface applications
【24h】

Projective dictionary pair learning for EEG signal classification in brain computer interface applications

机译:投影字典对学习在脑计算机接口应用中的脑电信号分类

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalogram (EEG) based brain-computer interface (BCI) is a useful communication tool between human brain and external devices. Accurate and effective EEG classification plays an important role in performance of BCI applications. In this paper, we propose a dictionary pair learning (DPL) method for EEG signal classification. In this method, we can learn a dictionary without costly L0 and L1 calculation and sparse coefficients have been calculated by linear projection instead of nonlinear sparse coding. We analyzed the performance of new method using EEG data from Ilia and IVa databases of BCI competition III. Experimental results showed that proposed method provides higher classification per: formance compared with other dictionary learning methods such as label consistent K Singular value decomposition (LC-KSVD). Based on our results, accuracy rates are as follows: 81.25%, 100%, 60.2%, 83.04% and 7937% for subjects "aa", "al", "av", "aw" and "ay", respectively from IVa database. Also, the average accuracy rate of 85.7% has been achieved for two-class classification of IIIa database. (C) 2016 Elsevier B.V. All rights reserved.
机译:基于脑电图(EEG)的脑机接口(BCI)是人脑与外部设备之间的有用通信工具。准确有效的EEG分类对BCI应用程序的性能起着重要作用。在本文中,我们提出了一种用于脑电信号分类的字典对学习(DPL)方法。在这种方法中,我们可以学习无需昂贵的L0和L1计算的字典,并且已经通过线性投影而不是非线性稀疏编码来计算稀疏系数。我们使用来自BCI竞赛III的Ilia和IVa数据库的EEG数据分析了新方法的性能。实验结果表明,与其他字典学习方法(如标签一致性K奇异值分解(LC-KSVD))相比,该方法可提供更高的分类性能。根据我们的结果,IVa的“ aa”,“ al”,“ av”,“ aw”和“ ay”对象的准确率分别为:81.25%,100%,60.2%,83.04%和7937%。数据库。另外,对IIIa数据库进行两类分类的平均准确率达到了85.7%。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号