首页> 外文期刊>Neurocomputing >Multi-instance learning based on representative instance and feature mapping
【24h】

Multi-instance learning based on representative instance and feature mapping

机译:基于代表性实例和特征映射的多实例学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, based on the representative instances and feature mapping, we propose two Multi-Instance Learning (MIL) algorithms, i.e. Representative Instance and Feature Mapping for instances (RIFM-I) and Representative Instance and Feature Mapping for bags (RIFM-B). These two algorithms firstly select representative positive and negative instances from positive and negative bags, respectively, and then map selected instances and bags to the feature space, in which MIL problem is converted into conventional single-instance learning problem. Finally, Support Vector Data Description (SVDD) method is introduced to solve the converted problem. The experiment on the MUSK dataset shows that RIFM-I performs better than RIFM-B and provides highest classification accuracies compared with the best results obtained among all the methods, and RIFM-B achieves a competitive average accuracy performance. Furthermore, RIFM-I is applied on COREL image repository for the content-based image retrieval. The experimental results show that RIFM-I outperforms the other image retrieval methods, such as MILES and MissSVM, and is able to distinguish two easily confused categories, Beach and Mountains, quite well. In addition, The results in ten data sets commonly used in MIL also show that RIFM-I can achieve better results in most cases. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,基于代表性实例和特征映射,我们提出了两种多实例学习(MIL)算法,即实例的代表性实例和特征映射(RIFM-I)和袋的代表性实例和特征映射(RIFM-B) )。这两种算法首先分别从正袋和负袋中选择代表性的正负实例,然后将选定的实例和袋映射到特征空间,将MIL问题转换为传统的单实例学习问题。最后,引入支持向量数据描述(SVDD)方法来解决转换后的问题。在MUSK数据集上进行的实验表明,与所有方法中获得的最佳结果相比,RIFM-I的性能优于RIFM-B,并且具有最高的分类精度,并且RIFM-B取得了具有竞争力的平均准确性。此外,RIFM-1应用于COREL图像存储库,用于基于内容的图像检索。实验结果表明,RIFM-1优于其他图像检索方法,例如MILES和MissSVM,并且能够很好地区分海滩和山脉这两个容易混淆的类别。此外,MIL中常用的十个数据集中的结果还表明,在大多数情况下,RIFM-1可获得更好的结果。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|790-796|共7页
  • 作者单位

    Hangzhou Dianzi Univ, Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China;

    Hangzhou Dianzi Univ, Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China;

    Hangzhou Dianzi Univ, Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China;

    Hangzhou Dianzi Univ, Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Pattern classification; Multi-instance learning; Support vector data description;

    机译:机器学习;模式分类;多实例学习;支持向量数据描述;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号