首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Web Objectionable Video Recognition Based on Deep Multi-Instance Learning With Representative Prototypes Selection
【24h】

Web Objectionable Video Recognition Based on Deep Multi-Instance Learning With Representative Prototypes Selection

机译:基于深度多实例学习的Web令人反感的视频识别用代表性原型选择

获取原文
获取原文并翻译 | 示例

摘要

To protect underage people from accessing objectionable videos in the Internet, an effective objectionable video recognition algorithm is necessary for web filtering. Recently, the multi-instance learning has been introduced for objectionable video recognition and achieves impressive results. However, hand-crafted features as well as redundant and noisy frames in objectionable videos become an intractable problem that inevitably degrades the recognition performance. In this paper, we propose a novel representative prototype selection algorithm embedding deep multi-instance representation learning. In the proposed method, an improved convolutional neural network is designed for multimodal multi-instance feature learning and a self-expressive dictionary learning model based on sparse and low rank constraint is designed to select the representative prototypes from each subspace of instances. Then the bag-level feature is constructed via mapping the bag to the selected prototypes. Experiments on three objectionable video sets show the effectiveness of our method for objectionable video recognition.
机译:为了保护未成年人员访问互联网中的令人反感的视频,有效的令人讨厌的视频识别算法是Web滤波所必需的。最近,已经引入了多实例学习,用于令人反感的视频识别,实现了令人印象深刻的结果。然而,令人讨厌的视频中的手工制作的功能以及冗余和嘈杂的帧成为一个难以解决的问题,不可避免地降低了识别性能。在本文中,我们提出了一种嵌入深度多实例表示学习的新型代表性原型选择算法。在所提出的方法中,改进的卷积神经网络被设计用于多模式多实例特征学习,并且基于稀疏和低秩约束的自表现字典学习模型被设计为从每个情况下选择来自每个子空间的代表性原型。然后通过将袋子映射到所选原型构造袋级功能。三种令人反感的视频集的实验表明了我们对令人反感的视频识别方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号