首页> 外文期刊>Neurocomputing >Robust RGB-D face recognition using Kinect sensor
【24h】

Robust RGB-D face recognition using Kinect sensor

机译:使用Kinect传感器进行稳健的RGB-D人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a robust face recognition algorithm for low resolution RGB-D Kinect data. Many techniques are proposed for image preprocessing due to the noisy depth data. First, facial symmetry is exploited based on the 3D point cloud to obtain a canonical frontal view image irrespective of the initial pose and then depth data is converted to XYZ normal maps. Secondly, multi-channel Discriminant Transforms are then used to project RGB to DCS (Discriminant Color Space) and normal maps to DNM (Discriminant Normal Maps). Finally, a Multi-channel Robust Sparse Coding method is proposed that codes the multiple channels (DCS or DNM) of a test image as a sparse combination of training samples with different pixel weighting. Weights are calculated dynamically in an iterative process to achieve robustness against variations in pose, illumination, facial expressions and disguise. In contrast to existing techniques, our multi-channel approach is more robust to variations. Reconstruction errors of the test image (DCS and DNM) are normalized and fused to decide its identity. The proposed algorithm is evaluated on four public databases. It achieves 98.4% identification rate on CurtinFaces, a Kinect database with 4784 RGB-D images of 52 subjects. Using a first versus all protocol on the Bosphorus, CASIA and FRGC v2 databases, the proposed algorithm achieves 97.6%, 95.6% and 95.2% identification rates respectively. To the best of our knowledge, these are the highest identification rates reported so far for the first three databases. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文针对低分辨率RGB-D Kinect数据提出了一种鲁棒的人脸识别算法。由于嘈杂的深度数据,提出了许多技术用于图像预处理。首先,基于3D点云利用面部对称性,无论初始姿势如何,均获得规范的正面视图图像,然后将深度数据转换为XYZ法线贴图。其次,然后使用多通道判别变换将RGB投影到DCS(判别色彩空间),将法线贴图投影到DNM(判别法线贴图)。最后,提出了一种多通道鲁棒稀疏编码方法,该方法将测试图像的多通道(DCS或DNM)编码为具有不同像素权重的训练样本的稀疏组合。权重是在迭代过程中动态计算的,以实现针对姿势,照明,面部表情和伪装变化的鲁棒性。与现有技术相比,我们的多渠道方法对变化更加健壮。将测试图像(DCS和DNM)的重建错误归一化并融合以决定其身份。该算法在四个公共数据库上进行了评估。在Kinect数据库CurtinFaces上,它具有52个对象的4784个RGB-D图像,识别率达到98.4%。通过在Bosphorus,CASIA和FRGC v2数据库上使用第一个协议和所有协议,该算法分别达到了97.6%,95.6%和95.2%的识别率。据我们所知,这是迄今为止前三个数据库报告的最高识别率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|93-108|共16页
  • 作者单位

    Curtin Univ, Dept Comp, Kent St, Kent, WA 6102, Australia;

    Dalian Minzu Univ, Dalian Key Lab Digital Technol Natl Culture, Dalian 116600, Liaoning, Peoples R China;

    Univ Western Australia, Comp Sci & Software Engn, 35 Stirling Highway, Crawley, WA 6009, Australia;

    Curtin Univ, Dept Comp, Kent St, Kent, WA 6102, Australia;

    Curtin Univ, Dept Comp, Kent St, Kent, WA 6102, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D face recognition; Kinect; Multi-channel discriminant transform; Sparse coding;

    机译:3D人脸识别;Kinect;多通道判别变换;稀疏编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号