首页> 外文期刊>Neurocomputing >Applying emerging soft computing approaches to control chart pattern recognition for an SPC-EPC process
【24h】

Applying emerging soft computing approaches to control chart pattern recognition for an SPC-EPC process

机译:将新兴的软计算方法应用于SPC-EPC过程的控制图模式识别

获取原文
获取原文并翻译 | 示例

摘要

One of the primary tasks for process personnel is to detect and identify the underlying process disturbances such that they can be quickly removed. Most research has concluded that the integration of statistical process control (SPC) and engineering process control (EPC) is an effective way to achieve this task. Although this integration may lead to many benefits, it could result in problems with control chart pattern recognition. The EPC adjustments could cause the underlying disturbance patterns to be embedded in the control chart, thus dramatically increasing the degree of difficulty to identify the behavior of process disturbances. This study considers a zero-order autoregressive and integrated moving average process (ARIMA) that contains five common process disturbances. In addition, the minimum mean squared error (MMSE) control actions serve as the role of the EPC. In contrast to using the conventional soft computing methods, this study proposes two emerging soft computing techniques, extreme learning machine (ELM) and random forest (RF), to address the difficulties for recognition of embedded disturbance patterns in the control charts. Experimental results revealed that the proposed approaches are able to effectively recognize various disturbance patterns of an SPC-EPC process. (C) 2016 Elsevier B.V. All rights reserved.
机译:过程人员的主要任务之一是检测和识别潜在的过程干扰,以便可以快速消除它们。大多数研究得出的结论是,统计过程控制(SPC)和工程过程控制(EPC)的集成是实现此任务的有效方法。尽管这种集成可能带来许多好处,但可能导致控制图模式识别出现问题。 EPC的调整可能导致潜在的干扰模式被嵌入控制图中,从而大大增加了识别过程干扰行为的难度。本研究考虑了包含五个常见过程干扰的零阶自回归和集成移动平均过程(ARIMA)。此外,最小均方误差(MMSE)控制动作还充当EPC的角色。与使用传统的软计算方法相反,本研究提出了两种新兴的软计算技术,即极限学习机(ELM)和随机森林(RF),以解决在控制图中识别嵌入式干扰模式的难题。实验结果表明,所提出的方法能够有效地识别SPC-EPC过程的各种干扰模式。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号