首页> 外文期刊>Pattern Analysis and Applications >Development of fitted line and fitted cosine curve for recognition and analysis of unnatural patterns in process control charts
【24h】

Development of fitted line and fitted cosine curve for recognition and analysis of unnatural patterns in process control charts

机译:开发拟合线和拟合余弦曲线,以识别和分析过程控制图中的非自然模式

获取原文
获取原文并翻译 | 示例

摘要

Unnatural patterns in process control charts exhibit out-of-control conditions. Therefore, increase in sensitivities in control charts is mandatory to study these situations. Because of the existence of inevitable natural variations, real-time detection and analysis of the significant patterns is a problem, especially when sensitivity level of the process to unnatural patterns formation is high. In the previous studies, most researchers have applied neural networks techniques to monitor significant patterns. Although this approach is effective, but structures of networks are complex and their architectures are difficult. The current paper develops fitted line and fitted cosine curve of samples to recognize and analyze the unnatural patterns. This simpler solution is more efficient and consumes less feedback time. The proposed model alarms occurrence of single and concurrent patterns and estimates their corresponding parameters. These fitted line and curve facilitate recognition and analysis of significant patterns at different levels of sensitivity, while the presented models often face with patterns misclassification error when high level of sensitivity is desired for unnatural patterns discrimination. To implement the proposed model, S-2 control chart has been selected as a case study. The accuracy and precision of the proposed tools are evaluated by simulated experiments.
机译:过程控制图中的非自然模式表现出失控状态。因此,必须增加控制图中的敏感性以研究这些情况。由于不可避免的自然变化的存在,重要图案的实时检测和分析是一个问题,特别是当过程对非自然图案形成的敏感度很高时。在以前的研究中,大多数研究人员已应用神经网络技术来监视重要模式。尽管这种方法有效,但是网络的结构很复杂,其架构也很困难。本文提出了样本的拟合线和拟合余弦曲线,以识别和分析不自然的模式。这种更简单的解决方案效率更高,消耗的反馈时间更少。所提出的模型警告单个和并发模式的发生并估计它们的相应参数。这些拟合的直线和曲线有助于在不同的灵敏度级别上识别和分析重要的模式,而当需要高级别的灵敏度来进行非自然的模式识别时,提出的模型通常会面临模式错误分类错误。为了实现建议的模型,已选择S-2控制图作为案例研究。通过仿真实验评估了所提出工具的准确性和精确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号