首页> 外文期刊>Neurocomputing >Sparsity induced locality preserving projection approaches for dimensionality reduction
【24h】

Sparsity induced locality preserving projection approaches for dimensionality reduction

机译:稀疏性的局部保留投影方法用于降维

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of sparse subspace learning for data classification and face recognition. New approaches called l(alpha)-regularization-based sparse locality preserving projection (alpha-SLPP) and structural sparse locality preserving projection (SSLPP) are proposed by incorporating theories of sparse representation and structural sparse regularization into spectral embedding. The proposed methods can efficiently exploit the local geometric information of the data. Also, by inducing sparsity, they facilitate the interpretation of the projection results and the detection of more discriminating features for classification and recognition. In addition, a-SLPP induces sparsity by using non-convex l(alpha)-norm regularizer, which is much closer to l(0)-norm. SSLPP derives a more organized sparse pattern through structural sparse regularization, and thus overcomes the problem that merely decreasing the cardinality may not be enough in certain situations. We formulate the sparse subspace learning problem as feasible optimization problems and present efficient methods to solve them. Experiments in data classification, face recognition, and pixel-corrupted face recognition are carried out to verify the feasibility and effectiveness of the proposed approaches. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们考虑将稀疏子空间学习用于数据分类和面部识别的问题。通过将稀疏表示和结构稀疏正则化的理论结合到频谱嵌入中,提出了一种新的方法,即基于l(α)正规化的稀疏局部性保留投影(alpha-SLPP)和结构稀疏局部性保留投影(SSLPP)。所提出的方法可以有效地利用数据的局部几何信息。而且,通过引起稀疏性,它们有助于投影结果的解释以及对分类和识别的更多区分特征的检测。此外,a-SLPP通过使用更接近l(0)-范数的非凸lα-范数正则化器来诱导稀疏性。 SSLPP通过结构性稀疏正则化得出了更有组织的稀疏模式,从而克服了在某些情况下仅降低基数可能还不够的问题。我们将稀疏子空间学习问题表述为可行的优化问题,并提出解决这些问题的有效方法。进行了数据分类,面部识别和像素损坏的面部识别实验,以验证所提出方法的可行性和有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号