首页> 外文期刊>Neural processing letters >Dimensionality Reduction Using Discriminant Collaborative Locality Preserving Projections
【24h】

Dimensionality Reduction Using Discriminant Collaborative Locality Preserving Projections

机译:使用判别式协作局部保留投影进行降维

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an effective dimensionality reduction algorithm named Discriminant Collaborative Locality Preserving Projections (DCLPP), which takes advantage of manifold learning and collaborative representation. Firstly, two adjacency graphs of the input data are adaptively constructed by an 12-optimization problem to model discriminant manifold structure. The adjacency graphs characterize the important properties such as the intra-class compactness and the inter-class separability. Next, based on collaborative representation reconstruction weights, both intra-class collaborative representation scatter and inter-class collaborative representation scatter can be calculated. Then, motivated by MMC, DCLPP can obtain optimal projection directions which could maximize the between-class scatter and minimize the within-class compactness. DCLPP naturally avoids the small sample size problem. Finally, after dimension reduction and data projection by DCLPP, the NN classifier is employed for classification. To evaluate the performance of DCLPP, we compare it with the most existing DR methods such as CRP and DSNPE on publicly available face databases and COIL-20 database. The experimental results demonstrate that DCLPP is feasible and effective.
机译:在本文中,我们提出了一种有效的降维算法,称为判别协作局部保留投影(DCLPP),它利用了流形学习和协作表示的优势。首先,通过12优化问题来自适应构造输入数据的两个邻接图,以对判别流形结构进行建模。邻接图描述了重要的属性,例如组内紧凑性和组间可分离性。接下来,基于协作表示重构权重,可以计算类内协作表示散布和类间协作表示散布。然后,受MMC的激励,DCLPP可以获得最佳的投影方向,该方向可以最大化类间散布并最小化类内紧凑性。 DCLPP自然避免了样本量小的问题。最后,在通过DCLPP进行降维和数据投影之后,将NN分类器用于分类。为了评估DCLPP的性能,我们将其与公开的人脸数据库和COIL-20数据库上最现有的DR方法(例如CRP和DSNPE)进行比较。实验结果表明,DCLPP是可行和有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号