首页> 外文期刊>Neurocomputing >Incorporating priors for medical image segmentation using a genetic algorithm
【24h】

Incorporating priors for medical image segmentation using a genetic algorithm

机译:使用遗传算法合并用于医学图像分割的先验

获取原文
获取原文并翻译 | 示例

摘要

Medical image segmentation is typically performed manually by a physician to delineate gross tumor volumes for treatment planning and diagnosis. Manual segmentation is performed by medical experts using prior knowledge of organ shapes and locations but is prone to reader subjectivity and inconsistency. Automating the process is challenging due to poor tissue contrast and ill-defined organ/tissue boundaries in medical images. This paper presents a genetic algorithm for combining representations of learned information such as known shapes, regional properties and relative position of objects into a single framework to perform automated three-dimensional segmentation. The algorithm has been tested for prostate segmentation on pelvic computed tomography and magnetic resonance images. (C) 2016 Elsevier B.V. All rights reserved.
机译:医学图像分割通常由医师手动执行,以描绘肿瘤的总体积,以进行治疗计划和诊断。由医学专家使用器官形状和位置的先验知识进行手动分割,但是容易造成读者主观性和不一致。由于不良的组织对比度和医学图像中不确定的器官/组织边界,使该过程自动化具有挑战性。本文提出了一种遗传算法,用于将学习信息的表示形式(例如已知形状,区域属性和对象的相对位置)组合到单个框架中,以执行自动三维分割。该算法已经过骨盆计算机断层扫描和磁共振图像的前列腺分割测试。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号