首页> 外文期刊>Computer Communications >Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study
【24h】

Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study

机译:用于医学图像的多级分割的量子与古典遗传算法:比较研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a multilevel segmentation methods of medical images based on the classical and quantum genetic algorithms. The Genetic Algorithm (GA) uses a binary coding while the Quantum Genetic Algorithm (QGA) uses the qubit encoding of individuals. The two evolutionary algorithms are employed to maximize efficiently Renyi, Masi and Shannon entropies for the purpose of multi-objects segmentation of medical images. The Particle Swarm Optimization algorithm (PSO) was also used for comparison reasons. The segmentation quality of the nine proposed approaches is assessed by means of the prevailing indices PSNR, SSIM and FSIM. The numerical results and the comparative study were carried out on a sample of twenty medical images. It was shown that the QGA outpaces the GA, and the PSO outperforms significantly the both algorithms in the optimization task. Finally, it was found that the Renyi entropy is more suitable for the purpose of medical image multilevel thresholding.
机译:在本文中,我们提出了一种基于经典和量子遗传算法的医学图像的多级分段方法。遗传算法(GA)使用二进制编码,而量子遗传算法(QGA)使用各个Qubit编码。使用两种进化算法以最大限度地最大限度地提高仁维,MASI和Shannon Entopive,以便多对象的医学图像分割。粒子群优化算法(PSO)也用于比较原因。九种拟议方法的分割质量通过主要的指数PSNR,SSIM和FSIM评估。在20个医学图像的样本中进行了数值结果和比较研究。结果表明,QGA在优化任务中显着地显着占据了PA的显着优于两种算法。最后,发现仁义熵更适合于医学图像多级阈值的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号