首页> 外文期刊>Intelligent automation and soft computing >LEVEL SET PRIORS BASED APPROACH TO THE SEGMENTATION OF PROSTATE ULTRASOUND IMAGE USING GENETIC ALGORITHM
【24h】

LEVEL SET PRIORS BASED APPROACH TO THE SEGMENTATION OF PROSTATE ULTRASOUND IMAGE USING GENETIC ALGORITHM

机译:基于遗传算法的前列腺超声图像分割的水平集优先级方法。

获取原文
获取原文并翻译 | 示例

摘要

We propose a level set priors based approach to segment the prostate ultrasound image using the genetic algorithm (GA) optimization. Firstly, the ground truths are manually outlined in the training sets to generating the corresponding training level sets, and we derive the implicit boundary curve representation by using Principal Component Analysis (PCA). Secondly, a novel narrow band boundary feature is presented to determine the prostate edge. Thirdly, we use the genetic algorithm to optimize the parameters of the implicit curve representation. The experimental results demonstrate that the level set priors based method using genetic algorithm is robust and efficient.
机译:我们提出了一种基于水平集先验的方法,使用遗传算法(GA)优化来分割前列腺超声图像。首先,在训练集中手动概述地面实况,以生成相应的训练水平集,然后使用主成分分析(PCA)得出隐式边界曲线表示。其次,提出了一种新颖的窄带边界特征来确定前列腺边缘。第三,我们使用遗传算法来优化隐式曲线表示的参数。实验结果表明,采用遗传算法的基于先验水平集的方法是鲁棒有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号