首页> 外文期刊>Neurocomputing >Active learning and data manipulation techniques for generating training examples in meta-learning
【24h】

Active learning and data manipulation techniques for generating training examples in meta-learning

机译:主动学习和数据处理技术,用于在元学习中生成训练示例

获取原文
获取原文并翻译 | 示例
           

摘要

Algorithm selection is an important task in different domains of knowledge. Meta-learning treats this task by adopting a supervised learning strategy. Training examples in meta-learning (called meta examples) are generated from experiments performed with a pool of candidate algorithms in a number of problems, usually collected from data repositories or synthetically generated. A meta-learner is then applied to acquire knowledge relating features of the problems and the best algorithms in terms of performance. In this paper, we address an important aspect in meta-learning which is to produce a significant number of relevant meta-examples. Generating a high quality set of meta-examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labelling the meta-examples. In the current work, we focus on the generation of meta-examples for meta-learning by combining: (1) a promising approach to generate new datasets (called datasetoids) by manipulating existing ones; and (2) active learning methods to select the most relevant datasets previously generated. The datasetoids approach is adopted to augment the number of useful problem instances for meta-example construction. However not all generated problems are equally relevant. Active meta-learning then arises to select only the most informative instances to be labelled. Experiments were performed in different scenarios, algorithms for meta-learning and strategies to select datasets. Our experiments revealed that it is possible to reduce the computational cost of generating meta-examples, while maintaining a good meta-learning performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:算法选择是知识不同领域中的重要任务。元学习通过采用监督学习策略来处理此任务。元学习中的训练示例(称为元示例)是通过在许多问题中使用一组候选算法进行的实验生成的,这些问题通常是从数据存储库中收集或综合生成的。然后,将元学习器应用于获取有关问题特征和性能方面最佳算法的知识。在本文中,我们解决了元学习中的一个重要方面,即产生大量相关的元示例。由于在某些领域中真实数据集的可用性较低以及标记元示例的计算成本较高,因此很难生成高质量的元示例集。在当前的工作中,我们通过结合以下方法集中于元学习的元示例的生成:(1)一种有前途的方法,通过处理现有数据集来生成新的数据集(称为数据集类); (2)主动学习方法以选择先前生成的最相关的数据集。采用数据集方法来增加用于元示例构建的有用问题实例的数量。但是,并非所有产生的问题都是同等重要的。然后出现主动元学习,以仅选择要标记的最具信息量的实例。在不同的场景,元学习算法和选择数据集的策略下进行了实验。我们的实验表明,有可能降低生成元示例的计算成本,同时保持良好的元学习性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号