首页> 外文期刊>Neurocomputing >Adaptive control of rapidly time-varying discrete -time system using initial-training-free online extreme learning machine
【24h】

Adaptive control of rapidly time-varying discrete -time system using initial-training-free online extreme learning machine

机译:使用无初始训练的在线极限学习机对快速时变离散时间系统的自适应控制

获取原文
获取原文并翻译 | 示例

摘要

While multiple model adaptive control (MMAC) scheme provides a solution to systems with unknown and rapidly time-varying parameters, many offline samples must be obtained beforehand, and the number of models is difficult to be found if no prior knowledge is given. This paper proposes a new adaptive control strategy to handle such systems. The principle is to use a change detection mechanism to check if there is an abrupt change, and immediately train a new model if a change is detected. A novel online identification algorithm, namely initial-training-free online extreme learning machine (ITF-OELM), is also proposed to allow the model to be trained anytime without concerns on prior data. With this strategy, only one model is necessary as compared to MMAC, resulting in reduction on computational complexity and memory usage. Simulation results show that the proposed strategy is effective. Besides, although the use of forgetting factor in ITF-OELM can accelerate the convergence speed for system identification, sometimes it may lead to ill-conditioned covariance matrix in the recursively updating process. This paper shows that such issue can be solved by the change detection mechanism. (C) 2016 Elsevier B.V. All rights reserved.
机译:尽管多模型自适应控制(MMAC)方案为参数未知且时变迅速的系统提供了解决方案,但必须事先获取许多离线样本,如果没有先验知识,则很难找到模型数量。本文提出了一种新的自适应控制策略来处理这种系统。原理是使用变更检测机制来检查是否有突然的变更,如果检测到变更,则立即训练新模型。还提出了一种新颖的在线识别算法,即无初始训练的在线极限学习机(ITF-OELM),以允许模型在任何时间进行训练而无需担心先前的数据。通过这种策略,与MMAC相比,仅需要一个模型,从而降低了计算复杂性和内存使用量。仿真结果表明该策略是有效的。此外,尽管在ITF-OELM中使用遗忘因子可以加快系统识别的收敛速度,但有时在递归更新过程中可能会导致条件差协方差矩阵。本文表明可以通过变更检测机制解决此问题。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号