首页> 外文期刊>Neurocomputing >Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
【24h】

Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm

机译:基于遗传算法的基于核的模糊c均值聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy c-means clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. Aimed at the problems existed in the FCM clustering algorithm, a kernel based fuzzy c-means (KFCM) is clustering algorithm is proposed to optimize fuzzy c-means clustering, based on the Genetic Algorithm (GA) optimization which is combined of the improved genetic algorithm and the kernel technique (GAKFCM). In this algorithm, the improved adaptive genetic algorithm is used to optimize the initial clustering center firstly, and then the KFCM algorithm is availed to guide the categorization, so as to improve the clustering performance of the FCM algorithm. In the paper, Matlab is used to realize the simulation, and the performance of FCM algorithm, KFCM algorithm and GAKFCM algorithm is testified by test datasets. The results proved that the GAKFCM algorithm proposed overcomes FCM's defects efficiently and improves the clustering performance greatly. (C) 2015 Elsevier B.V. All rights reserved.
机译:模糊c均值聚类算法(FCM)是模式识别中常用的一种方法。尽管无法单独指定聚类数量,但它在许多情况下具有提供良好建模结果的优势。针对FCM聚类算法存在的问题,提出了一种基于核的模糊c均值(KFCM)聚类算法,以遗传算法(GA)为基础,结合改进的遗传算法对模糊c均值进行优化。算法和内核技术(GAKFCM)。该算法首先使用改进的自适应遗传算法对初始聚类中心进行优化,然后利用KFCM算法指导分类,以提高FCM算法的聚类性能。本文利用Matlab实现了仿真,并通过测试数据集验证了FCM算法,KFCM算法和GAKFCM算法的性能。结果证明,提出的GAKFCM算法有效克服了FCM的缺陷,大大提高了聚类性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号