首页> 外文期刊>Neurocomputing >Online sequential reduced kernel extreme learning machine
【24h】

Online sequential reduced kernel extreme learning machine

机译:在线顺序缩减内核极限学习机

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an Online Sequential Reduced Kernel Extreme Learning Machine (OS-RKELM). In OS-RKELM, only a small part of the instances in the original training samples is employed for training the kernel neurons, while the output weights are attained analytically. Similar to the Online Sequential Extreme Learning Machine (OS-ELM), OS-RKELM learns data samples in a chunk-by-chunk or one-by-one mode and does not require an archival of the data sample once it has been learned. OS-RKELM also contains few control parameters, thus avoiding the need for cumbersome fine-tuning of the algorithm. OS-RKELM supports a widespread types of kernels as hidden neurons and is capable of addressing the singular problem that arises when the initial training samples are smaller than the neuron size. A comprehensive performance evaluation of the OS-RKELM against other state-of-the-art sequential learning algorithms, including OS-ELM, Large-scale Active Support Vector Machine (LASVM) and Budgeted Stochastic Gradient Descent Support Vector Machine (BSGD) using popular time series, regression and classification benchmarks have been conducted. Experimental results obtained indicate that the proposed OS-RKELM showcases improved prediction accuracy and efficiency over the OS-ELM, LASVM and BSGD in many cases. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种在线顺序减少式内核极限学习机(OS-RKELM)。在OS-RKELM中,原始训练样本中只有一小部分实例用于训练核神经元,而输出权重可以通过分析获得。与在线顺序极限学习机(OS-ELM)相似,OS-RKELM可以逐块或一对一的方式学习数据样本,并且一旦学习到数据样本就无需存档。 OS-RKELM还包含很少的控制参数,从而避免了繁琐的算法微调。 OS-RKELM支持广泛的内核类型作为隐藏的神经元,并且能够解决初始训练样本小于神经元大小时出现的奇异问题。针对OS-RKELM与其他最新的顺序学习算法(包括OS-ELM,大规模主动支持向量机(LASVM)和预算随机梯度下降支持向量机(BSGD))进行了综合性能评估,使用了流行的进行了时间序列,回归和分类基准测试。获得的实验结果表明,在许多情况下,与OS-ELM,LASVM和BSGD相比,拟议的OS-RKELM展示了更高的预测准确性和效率。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号