首页> 外文期刊>Engineering Applications of Artificial Intelligence >Meta-cognitive recurrent kernel online sequential extreme learning machine with kernel adaptive filter for concept drift handling
【24h】

Meta-cognitive recurrent kernel online sequential extreme learning machine with kernel adaptive filter for concept drift handling

机译:元认知递归内核在线顺序极限学习机,带有内核自适应滤波器,用于概念漂移处理

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a multi-step prediction model for time series prediction, i.e. Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine with Drift Detector Mechanism (Meta-RKOS-ELM_(ALD)). Recurrent multi-step algorithm is applied to release the limitation in the number of prediction steps, and Drift Detector Mechanism (DDM) is used to overcome the problem of concept drift in the prediction model. The new meta-cognitive strategy decides the way of the incoming data during training, which decreases the training computation of prediction model and solves the parameter dependency. In our evaluation, we use a total of six artificial data sets and three real-world data sets (Standard & Poor's 500 Index, Shanghai Stock Exchange Composite Index, and Ozone Concentration in Toronto) to prove the ability of kernel filters, the detecting ability of concept drift detector, and situation of applying meta-cognitive strategy in our proposed model. Experiments results indicate that the Meta-KOS-ELM_(ALD) with DDM has better forecasting ability in various predicting periods with the shortest learning time, as compared with other algorithms.
机译:本文提出了一种用于时间序列预测的多步预测模型,即具有漂移检测器机制的元认知递归核在线序贯极限学习机(Meta-RKOS-ELM_(ALD))。应用递归多步算法来消除预测步数的限制,并使用漂移检测器机制(DDM)克服了预测模型中概念漂移的问题。新的元认知策略决定了训练过程中输入数据的方式,减少了预测模型的训练计算量,解决了参数依赖性。在我们的评估中,我们总共使用了六个人造数据集和三个真实数据集(标准普尔500指数,上海证券交易所综合指数和多伦多的臭氧浓度)来证明核过滤器的能力,检测能力漂移检测器的概念以及在我们提出的模型中应用元认知策略的情况。实验结果表明,与其他算法相比,带有DDM的Meta-KOS-ELM_(ALD)在各种预测期内具有更好的预测能力,学习时间最短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号