首页> 外文期刊>Neurocomputing >Online sequential extreme learning machine with kernels for nonstationary time series prediction
【24h】

Online sequential extreme learning machine with kernels for nonstationary time series prediction

机译:在线序列极限学习机,带有用于非平稳时间序列预测的内核

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an online sequential extreme learning machine with kernels (OS-ELMK) has been proposed for nonstationary time series prediction. An online sequential learning algorithm, which can learn samples one-by-one or chunk-by-chunk, is developed for extreme learning machine with kernels. A limited memory prediction strategy based on the proposed OS-ELMK is designed to model the nonstationary time series. Performance comparisons of OS-ELMK with other existing algorithms are presented using artificial and real life nonstationary time series data. The results show that the proposed OS-ELMK produces similar or better accuracies with at least an order-of-magnitude reduction in the learning time.
机译:在本文中,提出了一种具有内核的在线顺序极限学习机(OS-ELMK),用于非平稳时间序列预测。针对具有内核的极限学习机,开发了一种在线顺序学习算法,该算法可以一对一或逐块学习样本。基于提出的OS-ELMK的有限内存预测策略旨在对非平稳时间序列进行建模。使用人工和现实生活中的非平稳时间序列数据,对OS-ELMK与其他现有算法的性能进行了比较。结果表明,提出的OS-ELMK产生了相似或更好的精度,并且学习时间至少减少了一个数量级。

著录项

  • 来源
    《Neurocomputing》 |2014年第5期|90-97|共8页
  • 作者

    Xinying Wang; Min Han;

  • 作者单位

    Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China;

    Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Online; Time series; Extreme learning machine; Support vector machine; Nonstationarv;

    机译:线上;时间序列;极限学习机;支持向量机;非平稳;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号