首页> 外文期刊>Neurocomputing >Probabilistic threshold query optimization based on threshold classification using ELM for uncertain data
【24h】

Probabilistic threshold query optimization based on threshold classification using ELM for uncertain data

机译:基于阈值分类的概率阈值查询优化(基于ELM)的不确定数据

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic threshold query (PTQ), which returns all the objects satisfying the query with probabilities higher than a threshold, is widely used in uncertain database. Most previous work focused on the efficiency of query process, but paid no attention to the setting of thresholds. However, setting the extreme thresholds may lead to empty result or too many results. It is difficult for a user to set a suitable threshold for a query. In this paper, we propose a new framework for PTQs based on threshold classification using ELM, where the probability threshold is replaced by the range of result number which is more intuitive and easier to choose. We first introduce the features selected for the two most important PTQs, which are nearest neighbor (NN) and reverse nearest neighbor (RNN) queries. Then a threshold classification algorithm (TCA) using ELM is proposed to set a suitable threshold for the query, where plurality voting method is applied. Further, the PTQ processing integrated with TCA are presented, and a dynamic classification strategy is proposed subsequently. Extensive experiments show that compared with the thresholds those the users input directly, the thresholds chosen by ELM classifiers are more suitable, which further improves the performance of PTQs algorithms. In addition, ELM outperforms SVM with regard to both the response time and classification accuracy. (C) 2015 Elsevier B.V. All rights reserved.
机译:概率阈值查询(PTQ)返回不确定性数据库中广泛使用的对象,该对象返回满足查询条件的所有对象的概率均高于阈值。以前的大多数工作都集中在查询过程的效率上,但没有关注阈值的设置。但是,设置极限阈值可能会导致结果为空或结果过多。用户难以为查询设置合适的阈值。在本文中,我们提出了一种基于阈值分类的PTQ的新框架,该阈值分类使用ELM,其中概率阈值被结果数范围所取代,该范围更直观,更容易选择。我们首先介绍为两个最重要的PTQ选择的功能,它们是最近邻居(NN)和反向最近邻居(RNN)查询。然后,提出了一种使用ELM的阈值分类算法(TCA)为查询设置合适的阈值,并应用了多种投票方法。此外,提出了与TCA集成的PTQ处理,随后提出了动态分类策略。大量实验表明,与用户直接输入的阈值相比,ELM分类器选择的阈值更为合适,从而进一步提高了PTQs算法的性能。此外,就响应时间和分类准确性而言,ELM优于SVM。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号