首页> 外文期刊>Neurocomputing >Probabilistic group nearest neighbor query optimization based on classification using ELM
【24h】

Probabilistic group nearest neighbor query optimization based on classification using ELM

机译:基于ELM分类的概率群最近邻查询优化

获取原文
获取原文并翻译 | 示例

摘要

AbstractTheprobabilistic group nearest neighbor(PGNN)query , which returns all the uncertain objects whose probabilities of being the group nearest neighbor (GNN) results exceed a user-specified threshold, is widely used in uncertain database. Most existing work for answering PGNN queries adopted a general framework which consist of three phases:spatial pruning, probabilistic pruning, refinement. In the probabilistic pruning phase, dividing the uncertain regions into many partitions to derive a tighter probabilities bounds is a common method. However, there is a tradeoff between the computational cost of probabilistic pruning phase and refinement phase controlled by the granularity of the partitions. In this paper, we study the problem of setting the optimal granularity of the partitions for uncertain objects, and propose a new framework for PGNN queries based on granularity classification using ELM such that the overall cost is minimized. In addition, to improve the accuracy of classification and make the classifier applicable to the dynamic environment, a plurality voting method and a dynamic classification strategy are proposed respectively. Extensive experiments shows that compared with the default granularities of the partitions, the granularities chosen by ELM classifiers are more proper, which further improves the performance of PGNN query algorithm. In addition, ELM outperforms SVM with regard to both the response time and classification accuracy.
机译: 摘要 概率组最近邻居(PGNN)查询,它返回所有不确定的对象,这些对象的概率是该组最近邻居(GNN)结果超过了用户指定的阈值,被广泛用于不确定性数据库。现有的大多数回答PGNN查询的工作都采用了一个通用框架,该框架包含三个阶段:空间修剪,概率修剪,优化。在概率修剪阶段,将不确定区域划分为多个分区以得出更严格的概率范围是一种常见方法。但是,在概率修剪阶段的计算成本与由分区的粒度控制的细化阶段之间需要权衡取舍。在本文中,我们研究了为不确定对象设置分区的最佳粒度的问题,并提出了一种新的基于ELM的基于粒度分类的PGNN查询框架,从而使总成本最小化。另外,为了提高分类的准确性并使分类器适用于动态环境,分别提出了多种投票方法和动态分类策略。大量的实验表明,与分区的默认粒度相比,ELM分类器选择的粒度更合适,这进一步提高了PGNN查询算法的性能。此外,在响应时间和分类准确性方面,ELM均优于SVM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号