首页> 外文期刊>Neurocomputing >Summarizing video sequence using a graph-based hierarchical approach
【24h】

Summarizing video sequence using a graph-based hierarchical approach

机译:使用基于图的分层方法汇总视频序列

获取原文
获取原文并翻译 | 示例

摘要

Video summarization is a simplification of video content for compacting the video information. The video summarization problem can be transformed into a clustering problem, in which some frames are selected to saliently represent the video content. In this work, we use a graph-based hierarchical clustering method for computing a video summary. In fact, the proposed approach, called HSUMM, adopts a hierarchical clustering method to generate a weight map from the frame similarity graph in which the clusters (or connected components of the graph) can easily be inferred. Moreover, the use of this strategy allows the application of a similarity measure between clusters during graph partition, instead of considering only the similarity between isolated frames. We also provide a unified framework for video summarization based on minimum spanning tree and weight maps in which HSUMM could be seen as an instance that uses a minimum spanning tree of frames and a weight map based on hierarchical observation scales computed over that tree. Furthermore, a new evaluation measure that assesses the diversity of opinions among users when they produce a summary for the same video, called Covering, is also proposed. During tests, different strategies for the identification of summary size and for the selection of keyframes were analyzed. Experimental results provide quantitative and qualitative comparison between the new approach and other popular algorithms from the literature, showing that the new algorithm is robust. Concerning quality measures, HSUMM outperforms the compared methods regardless of the visual feature used in terms of F-measure. (C) 2015 Elsevier B.V. All rights reserved.
机译:视频摘要是用于压缩视频信息的视频内容的简化。视频摘要问题可以转换为聚类问题,在聚类问题中选择一些帧以突出表示视频内容。在这项工作中,我们使用基于图的层次聚类方法来计算视频摘要。实际上,所提出的方法称为HSUMM,它采用分层聚类方法从帧相似度图中生成权重图,从中可以轻松推断出聚类(或图的连接部分)。此外,这种策略的使用允许在图分区期间在群集之间应用相似性度量,而不是仅考虑孤立帧之间的相似性。我们还提供了基于最小生成树和权重图的视频汇总的统一框架,其中HSUMM可被视为使用最小生成树框架和基于在该树上计算的分层观察标度的权重图的实例。此外,还提出了一种新的评估措施,用于评估用户在制作同一视频的摘要时用户之间意见的多样性,称为Covering。在测试期间,分析了用于确定摘要大小和选择关键帧的不同策略。实验结果提供了新方法与文献中其他流行算法之间的定量和定性比较,表明新算法是可靠的。关于质量度量,无论F度量使用哪种视觉功能,HSUMM都优于比较方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号