首页> 外文期刊>Neurocomputing >A learning-based CT prostate segmentation method via joint transductive feature selection and regression
【24h】

A learning-based CT prostate segmentation method via joint transductive feature selection and regression

机译:基于关节转导特征选择和回归的基于学习的CT前列腺分割方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there has been a great interest in prostate segmentation, which is an important and challenging task for CT image guided radiotherapy. In this paper, a learning-based segmentation method via joint transductive feature selection and transductive regression is presented, which incorporates the physician's simple manual specification (only taking a few seconds), to aid accurate segmentation, especially for the case with large irregular prostate motion. More specifically, for the current treatment image, experienced physician is first allowed to manually assign the labels for a small subset of prostate and non-prostate voxels, especially in the first and last slices of the prostate regions. Then, the proposed method follows the two step: in prostate-likelihood estimation step, two novel algorithms, tLasso and wLapRLS, will be sequentially employed for transductive feature selection and transductive regression, respectively, aiming to generate the prostate-likelihood map. In multi-atlases based label fusion step, the final segmentation result will be obtained according to the corresponding prostate-likelihood map and the previous images of the same patient. The proposed method has been substantially evaluated on a real prostate CT dataset including 24 patients with 330 CT images, and compared with several state-of-the-art methods. Experimental results show that the proposed method outperforms the state-of-the-arts in terms of higher Dice ratio, higher true positive fraction, and lower centroid distances. Also, the results demonstrate that simple manual specification can help improve the segmentation performance, which is clinically feasible in real practice. (C) 2015 Elsevier B.V. All rights reserved.
机译:近年来,对前列腺分割已经引起了极大的兴趣,这对于CT图像引导的放射治疗是一项重要而具有挑战性的任务。在本文中,提出了一种通过联合转导特征选择和转导回归的基于学习的分割方法,该方法结合了医生的简单手册规范(仅需几秒钟),以帮助进行准确的分割,特别是对于前列腺运动不规则的情况。更具体地,对于当前的治疗图像,首先允许有经验的医师为前列腺和非前列腺体素的一小部分手动分配标签,尤其是在前列腺区域的第一和最后切片中。然后,所提出的方法遵循两个步骤:在前列腺可能性估计步骤中,将依次采用两种新算法tLasso和wLapRLS进行转导特征选择和转导回归,以生成前列腺可能性图。在基于多图谱的标签融合步骤中,将根据相应的前列腺可能性图和同一患者的先前图像获得最终的分割结果。所提议的方法已在包括24位患者的330幅CT图像的真实前列腺CT数据集上进行了实质性评估,并与几种最新方法进行了比较。实验结果表明,该方法在更高的Dice比,更高的真实正分数和更低的质心距离方面优于最新技术。而且,结果表明,简单的手动说明可以帮助提高分割性能,这在实际操作中在临床上是可行的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第2期|317-331|共15页
  • 作者单位

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China|Univ N Carolina, Dept Radiol & BRIC, Chapel Hill, NC USA;

    Univ N Carolina, Dept Radiol & BRIC, Chapel Hill, NC USA;

    Univ N Carolina, Dept Radiol & BRIC, Chapel Hill, NC USA;

    Univ N Carolina, Dept Radiol & BRIC, Chapel Hill, NC USA;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China;

    Univ N Carolina, Dept Radiol & BRIC, Chapel Hill, NC USA|Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature selection; Transductive learning; Prostate segmentation;

    机译:特征选择;直觉学习;前列腺分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号