首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Semi-Automatic Segmentation of Prostate in CT Images via Coupled Feature Representation and Spatial-Constrained Transductive Lasso
【24h】

Semi-Automatic Segmentation of Prostate in CT Images via Coupled Feature Representation and Spatial-Constrained Transductive Lasso

机译:耦合特征表示和空间约束转导套索在CT图像中前列腺的半自动分割

获取原文
获取原文并翻译 | 示例

摘要

Conventional learning-based methods for segmenting prostate in CT images ignore the relations among the low-level features by assuming all these features are independent. Also, their feature selection steps usually neglect the image appearance changes in different local regions of CT images. To this end, we present a novel semi-automatic learning-based prostate segmentation method in this article. For segmenting the prostate in a certain treatment image, the radiation oncologist will be first asked to take a few seconds to manually specify the first and last slices of the prostate. Then, prostate is segmented with the following two steps: (i) Estimation of 3D prostate-likelihood map to predict the likelihood of each voxel being prostate by employing the coupled feature representation, and the proposed Spatial-COnstrained Transductive LassO (SCOTO); (ii) Multi-atlases based label fusion to generate the final segmentation result by using the prostate shape information obtained from both planning and previous treatment images. The major contribution of the proposed method mainly includes: (i) incorporating radiation oncologist’s manual specification to aid segmentation, (ii) adopting coupled features to relax previous assumption of feature independency for voxel representation, and (iii) developing SCOTO for joint feature selection across different local regions. The experimental result shows that the proposed method outperforms the state-of-the-art methods in a real-world prostate CT dataset, consisting of 24 patients with totally 330 images, all of which were manually delineated by the radiation oncologist for performance evaluation. Moreover, our method is also clinically feasible, since the segmentation performance can be improved by just requiring the radiation oncologist to spend only a few seconds for manual specification of ending slices in the current treatment CT image.
机译:假定所有这些特征都是独立的,基于传统的基于学习的方法在CT图像中分割前列腺会忽略低级特征之间的关系。而且,它们的特征选择步骤通常会忽略CT图像不同局部区域的图像外观变化。为此,我们在本文中提出了一种新颖的基于半自动学习的前列腺分割方法。为了在一定的治疗图像中分割前列腺,将首先要求放射肿瘤学家花费几秒钟来手动指定前列腺的第一片和最后片。然后,通过以下两个步骤对前列腺进行分割:(i)估计3D前列腺似然图,以通过使用耦合特征表示和拟议的空间约束应变导引LassO(SCOTO)来预测每个体素为前列腺的可能性; (ii)基于多图谱的标签融合,通过使用从计划和先前治疗图像中获得的前列腺形状信息来生成最终的分割结果。拟议方法的主要贡献主要包括:(i)结合放射肿瘤学家的手册规范来辅助分割,(ii)采用耦合特征以放宽先前对体素表示的特征独立性的假设,以及(iii)开发SCOTO进行跨区域联合特征选择不同的地区。实验结果表明,所提出的方法在现实世界中的前列腺CT数据集中优于现有技术,该方法由24位患者组成,共330张图像,所有这些图像均由放射肿瘤学家手动描绘以进行性能评估。此外,我们的方法在临床上也是可行的,因为仅通过要求放射肿瘤学家仅花费几秒钟的时间来手动指定当前治疗CT图像中的最终切片,就可以提高分割性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号