首页> 外文期刊>Neurocomputing >Undirected cyclic graph based multiclass pair-wise classifier: Classifier number reduction maintaining accuracy
【24h】

Undirected cyclic graph based multiclass pair-wise classifier: Classifier number reduction maintaining accuracy

机译:基于无向循环图的多类成对分类器:分类器数量减少保持精度

获取原文
获取原文并翻译 | 示例

摘要

Supervised classification approaches try to classify correctly the new unlabelled examples based on a set of well-labelled samples. Nevertheless, some classification methods were formulated for binary classification problems and has difficulties for multi-class problems. Binarization strategies decompose the original multi-class dataset into multiple two-class subsets. For each new sub-problem a classifier is constructed. One-vs-One is a popular decomposition strategy that in each sub-problem discriminates the cases that belong to a pair of classes, ignoring the remaining ones. One of its drawbacks is that it creates a large number of classifiers, and some of them are irrelevant. In order to reduce the number of classifiers, in this paper we propose a new method called Decision Undirected Cyclic Graph. Instead of making the comparisons of all the pair of classes, each class is compared only with other two classes; evolutionary computation is used in the proposed approach in order to obtain suitable class pairing. In order to empirically show the performance of the proposed approach, a set of experiments over four popular Machine Learning algorithms are carried out, where our new method is compared with other well-known decomposition strategies of the literature obtaining promising results. (C) 2015 Elsevier B.V. All rights reserved.
机译:监督分类方法尝试根据一组标记良好的样本对新的未标记示例进行正确分类。然而,针对二元分类问题制定了一些分类方法,并且对于多分类问题存在困难。二值化策略将原始的多类数据集分解为多个两类子集。对于每个新的子问题,构造一个分类器。 “一对多”是一种流行的分解策略,它在每个子问题中区分属于一对类的情况,而忽略其余的情况。它的缺点之一是它创建了大量的分类器,其中一些是不相关的。为了减少分类器的数量,本文提出了一种新的决策无向循环图方法。无需对所有两个类别进行比较,而是仅将每个类别与其他两个类别进行比较。为了获得合适的类别配对,在提出的方法中使用了进化计算。为了从经验上证明该方法的性能,对四种流行的机器学习算法进行了一组实验,将我们的新方法与文献中其他知名的分解策略进行了比较,获得了可喜的结果。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第1期|1576-1590|共15页
  • 作者单位

    Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Donostia San Sebastian 20018, Spain;

    Univ Basque Country UPV EHU, Dept Appl Math, Donostia San Sebastian 20018, Spain;

    Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Donostia San Sebastian 20018, Spain;

    Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Donostia San Sebastian 20018, Spain;

    Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Donostia San Sebastian 20018, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Supervised classification; Decomposition strategies; One-vs-One;

    机译:机器学习;监督分类;分解策略;一对多;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号