首页> 外文期刊>Neurocomputing >Long-term performance of collaborative filtering based recommenders in temporally evolving systems
【24h】

Long-term performance of collaborative filtering based recommenders in temporally evolving systems

机译:在时间演进系统中基于协作过滤的推荐器的长期性能

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems benefit people at every moment in their daily life. Considerable attentions have been drawn by performance in one-step recommendation and static user-item network, while the performances of recommenders on temporally evolving systems remain unclear. To address this issue, this paper first describes an online commercial system by using a bipartite network. On this network, a recommendation-based evolution method is proposed to simulate the temporal dynamics between a recommender and its users. Then the long-term performance of three state-of-the-art collaborative filtering (CF)-based recommenders, i.e., the user-based CF (UCF), item-based CF (ICF) and latent factor based model (LFM), is evaluated on the generated temporally evolving networks. Experimental results on two large, real datasets generated by industrial applications demonstrate that 1) optimization-based CF models like the LFM enjoy their high-prediction accuracy in one-step recommendation; and 2) entity relationship-based CF models like the ICF benefit the recommendation diversity, as well as the system health on a temporally evolving network. It turns out that in a temporally evolving system, an efficient recommender should consider both the one-step and long-term effects to generate satisfactory recommendations. Thus, it is necessary to adopt heterogeneous models, e.g., trade-off between optimization based model and entity relationship-based model, in real systems to grasp various users' behavior patterns to improve their experiences. (c) 2017 Elsevier B.V. All rights reserved.
机译:推荐系统使人们在日常生活中的每时每刻都受益。一步推荐和静态用户项目网络中的性能引起了相当大的关注,而在时间上不断发展的系统上,推荐器的性能仍然不清楚。为了解决这个问题,本文首先介绍了一种使用双向网络的在线商业系统。在该网络上,提出了一种基于推荐的演化方法,以模拟推荐者与其用户之间的时间动态。然后三个基于最新协作过滤(CF)的推荐器的长期性能,即基于用户的CF(UCF),基于项目的CF(ICF)和基于潜在因子的模型(LFM)在生成的时间演化网络上进行评估。在工业应用程序生成的两个大型真实数据集上的实验结果表明:1)基于优化的CF模型(如LFM)在一站式推荐中就具有较高的预测精度; 2)基于实体关系的CF模型(例如ICF)有利于推荐多样性以及时间演进网络上的系统健康状况。事实证明,在时间上不断发展的系统中,高效的推荐者应该同时考虑一步和长期的影响,以产生令人满意的推荐。因此,有必要在实际系统中采用异构模型,例如在基于优化的模型和基于实体关系的模型之间进行权衡,以掌握各种用户的行为模式以改善他们的体验。 (c)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第6期|635-643|共9页
  • 作者单位

    Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China;

    Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China|Shenzhen Univ, Coll Comp Sci & Engn, Shenzhen 518060, Peoples R China;

    Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China;

    Jinan Univ, Guangzhou 510632, Guangdong, Peoples R China|Sangfor Technol Inc, Shenzhen 518057, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Learning system; Recommender system; One-step recommendation; Long-term effect; Temporally evolving system; Bipartite network;

    机译:学习系统;推荐系统;一步推荐;长期效果;临时发展的系统;双向网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号