首页> 外文期刊>Neurocomputing >An improved recommendation algorithm for big data cloud service based on the trust in sociology
【24h】

An improved recommendation algorithm for big data cloud service based on the trust in sociology

机译:基于社会学信任的改进型大数据云服务推荐算法

获取原文
获取原文并翻译 | 示例

摘要

Personal recommendation technology is becoming a useful and popular solution to solve the problem of information overload with the popularity of big data cloud services. But most recommendation algorithms pay too much attention to the similarity to focus on the social trust between users. So this paper focus on the research of hybrid Recommendation algorithm for big data based on the optimization combining with the similarity and trust in sociology. In this paper, we introduced some user trust models including trust path model and loop trust model, and then we took these models into the calculation of mixed weighting. The experiment results show that the recommendation algorithm considering the trust models has the higher accuracy than the traditional recommendation algorithm, and we have a 2% increase in both MEA (Mean Absolute Error) and RMSE (Root Mean Square Error). (C) 2017 Elsevier B.V. All rights reserved.
机译:个人推荐技术正成为解决大数据云服务普及带来的信息过载问题的有用且流行的解决方案。但是大多数推荐算法都过于关注相似性,以致无法关注用户之间的社交信任。因此,本文基于结合社会学的相似性和信任度的优化,着重研究基于大数据的混合推荐算法。本文介绍了一些用户信任模型,包括信任路径模型和循环信任模型,然后将这些模型用于混合权重的计算。实验结果表明,考虑信任模型的推荐算法比传统推荐算法具有更高的准确性,并且MEA(均方根绝对误差)和RMSE(均方根误差)均增加了2%。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第20期|49-55|共7页
  • 作者单位

    Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Comp & Software, Jiangsu Engn Ctr Network Monitoring, Nanjing, Jiangsu, Peoples R China;

    Yangzhou Univ, Coll Informat Engn, Yangzhou, Jiangsu, Peoples R China;

    Seoul Natl Univ Sci & Technol, Dept Comp Sci & Engn, Seoul, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommendation technology; Trust model; Similarity; Big data; Hybrid recommendation;

    机译:推荐技术;信任模型;相似度;大数据;混合推荐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号