首页> 中文期刊> 《计算机工程》 >基于用户综合信任度与社区信任传播的推荐算法

基于用户综合信任度与社区信任传播的推荐算法

     

摘要

传统的协同过滤推荐算法存在数据稀疏性、用户冷启动等问题,基于信任机制的推荐算法虽然能够缓解数据稀疏性问题,但是在信任传播过程中时间成本过高.为此,提出基于用户综合信任度与社区信任传播的推荐算法,通过算法中的虚拟社区信任模型获取用户综合信任度,将其带入协同过滤算法得到推荐结果.该算法综合考虑显性和隐性2种直接信任度,得到直接综合信任度构建用户信任网络,并利用重叠社区发现算法为用户划分专属虚拟社区进行信任传播,弥补直接综合信任度数量的不足.在Epinions数据集上的实验结果表明,该算法能够在缓解数据稀疏性和用户冷启动问题的同时,降低信任传播的时间成本,提高推荐质量.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号