首页> 外文期刊>Neurocomputing >An efficient instance selection algorithm for k nearest neighbor regression
【24h】

An efficient instance selection algorithm for k nearest neighbor regression

机译:k最近邻回归的有效实例选择算法

获取原文
获取原文并翻译 | 示例

摘要

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow execution speed and large memory requirements. To solve this problem, many efforts have been devoted, but mainly focused on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance of regressor, and then sorts the left instances by the difference on output among instances and their nearest neighbors. Finally, the left instances with little contribution measured by the training error are successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art algorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have the lowest instance storage ratio. (C) 2017 Elsevier B.V. All rights reserved.
机译:k最近邻算法(kNN)是一种非常容易理解的用于分类或回归的算法。这也是一种惰性算法,不使用训练数据点进行任何概括,换句话说,它在测试阶段保留所有训练数据。因此,人口规模成为kNN的主要关注点,因为人口规模大可能导致执行速度慢和内存需求大。为了解决这个问题,已经进行了许多努力,但是主要集中在kNN分类上。现在,我们提出一种算法来减少kNN回归(DISKR)训练集的大小。在该算法中,我们首先删除影响回归器性能的离群实例,然后按实例与其最近邻居之间的输出差异对左实例进行排序。最后,遵循该规则,依次删除因训练误差而产生的贡献很小的左实例。将该算法与19个数据集上的5种最新算法进行了比较,实验结果表明该算法具有相似的预测能力,但实例存储率最低。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第16期|26-34|共9页
  • 作者单位

    Shanxi Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Meteorol Adm, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Instance selection; Nearest neighbor; Regression; Data reduction; Significant difference;

    机译:实例选择;最近邻居;回归;数据约简;显着差异;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号