首页> 外文会议>Decision making and soft computing >GENETIC ALGORITHM BASED INSTANCE SELECTION FOR NEAREST NEIGHBOR RULE
【24h】

GENETIC ALGORITHM BASED INSTANCE SELECTION FOR NEAREST NEIGHBOR RULE

机译:基于遗传算法的近邻规则实例选择

获取原文
获取原文并翻译 | 示例

摘要

Instance selection is an important pre-processing step in pattern recognition and machine learning. In this paper, we propose a novel instance selection method based on genetic algorithm for nearest neighbor (AGAIS_NN), which compose of three main parts: elitist strategy, adaptive probabilities of crossover and mutation, and fitness function. To validate the proposed algorithm, we compare AGAIS_NN with other classical instance selection methods. The experimental results show that our proposal is more effective and useful than other approaches.
机译:实例选择是模式识别和机器学习中的重要预处理步骤。在本文中,我们提出了一种基于遗传算法的最近邻实例选择方法(AGAIS_NN),它由三个主要部分组成:精英策略,交叉和变异的自适应概率以及适应度函数。为了验证所提出的算法,我们将AGAIS_NN与其他经典实例选择方法进行了比较。实验结果表明,我们的建议比其他方法更有效和有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号