首页> 外文期刊>Neurocomputing >Multi-task, multi-domain learning: Application to semantic segmentation and pose regression
【24h】

Multi-task, multi-domain learning: Application to semantic segmentation and pose regression

机译:多任务,多领域学习:应用于语义分割和姿势回归

获取原文
获取原文并翻译 | 示例

摘要

We present an approach that leverages multiple datasets annotated for different tasks (e.g., classification with different labelsets) to improve the predictive accuracy on each individual dataset. Domain adaptation techniques can correct dataset bias but they are not applicable when the tasks differ, and they need to be complemented to handle multi-task settings. We propose a new selective loss function that can be integrated into deep neural networks to exploit training data coming from multiple datasets annotated for related but possibly different labelsets. We show that the gradient-reversal approach for domain adaptation can be used in this setup to additionally handle domain shifts. We also propose an auto-context approach that further captures existing correlations across tasks. Thorough experiments on two types of applications (semantic segmentation and hand pose estimation) show the relevance of our approach in different contexts. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们提出了一种方法,该方法利用为不同任务(例如,具有不同标签集的分类)注释的多个数据集来提高每个单独数据集的预测准确性。域自适应技术可以纠正数据集偏差,但是当任务不同时它们不适用,并且需要对它们进行补充以处理多任务设置。我们提出了一种新的选择性损失函数,可以将其集成到深度神经网络中,以利用来自标注有相关但可能不同标签集的多个数据集的训练数据。我们显示,可以在此设置中使用用于域自适应的梯度反转方法来另外处理域移位。我们还提出了一种自动上下文方法,可以进一步捕获跨任务的现有关联。在两种类型的应用程序(语义分割和手部姿势估计)上进行的全面实验证明了我们的方法在不同背景下的相关性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号