首页> 外文期刊>Neurocomputing >Mining intrinsic information by matrix factorization-based approaches for collaborative filtering in recommender systems
【24h】

Mining intrinsic information by matrix factorization-based approaches for collaborative filtering in recommender systems

机译:通过基于矩阵分解的方法挖掘内在信息,以在推荐系统中进行协作过滤

获取原文
获取原文并翻译 | 示例

摘要

Matrix factorization (MF) is an increasingly important approach in the field of missing value prediction because recommender systems are rapidly becoming ubiquitous. MF-based collaborative filtering (CF) seeks to improve recommender performance by combining user-item matrix with MF. However, most MF-based approaches available at present could not obtain high prediction accuracy because of the sparse availability of user-item matrices in CF models. The present paper proposes a framework that involves two efficient MF, dynamic single-element-based CF-integrating manifold regularization (DSMMF) and dynamic single-element-based Tikhonov graph regularization non-negative MF (DSTNMF). The aim of this framework is to better use the intrinsic structure of user-item rating matrix and user/item content information, overcome the dimensionality curse and ill-posed problem of weighted graph NMF, and evade the frequent manipulations of indicator matrices that lack practicability. We validate the effectiveness of our proposed algorithms with respect to recommender performance by four indices on three datasets. We demonstrate that our proposed approaches lead to considerable improvement compared with several other state-of-the-art approaches. 2017 Elsevier B.V. All rights reserved.
机译:矩阵分解(MF)在缺失值预测领域中正变得越来越重要,因为推荐系统正在迅速普及。基于MF的协同过滤(CF)旨在通过将用户项矩阵与MF结合来提高推荐者的性能。但是,由于CF模型中用户项矩阵的稀疏可用性,目前可用的大多数基于MF的方法无法获得较高的预测精度。本文提出了一个包含两个有效MF的框架,即基于动态单元素的CF积分流形正则化(DSMMF)和基于动态单元素的Tikhonov图正则化非负MF(DSTNMF)。该框架的目的是更好地利用用户项目评分矩阵和用户/项目内容信息的内在结构,克服权重图NMF的维数诅咒和不适定问题,并逃避缺乏实用性的指标矩阵的频繁操作。我们通过三个数据集上的四个索引来验证所提出算法相对于推荐者性能的有效性。我们证明,与其他几种最新方法相比,我们提出的方法可带来可观的改进。 2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第2期|48-63|共16页
  • 作者单位

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Shaanxi, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Matrix factorization; Collaborative filtering; Recommender systems; Single-element-based; Tikhonov regularization; Manifold regularization;

    机译:矩阵分解;协作过滤;推荐系统;基于单元素;Tikhonov正则;歧管正则;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号