首页> 外文期刊>Neurocomputing >Automatic image annotation by combining generative and discriminant models
【24h】

Automatic image annotation by combining generative and discriminant models

机译:结合生成模型和判别模型进行自动图像标注

获取原文
获取原文并翻译 | 示例

摘要

Generative model based image annotation methods have achieved good annotation performance. However, due to the problem of "semantic gap", these methods always suffer from the images with similar visual features but different semantics. It seems promising to separate these images from semantic relevant ones by using discriminant models, since they have shown excellent generalization performance. Motivated to gain the benefits of both generative and discriminative approaches, in this paper, we propose a novel image annotation approach which combine the generative and discriminative models through local discriminant topics in the neighborhood of the unlabeled image. Singular Value Decomposition(SVD) is applied to group the images of the neighborhood into different topics according to their semantic labels. The semantic relevant images and the irrelevant ones are always assigned into different topics. By exploiting the discriminant information between different topics, Support Vector Machine(SVM) is applied to classify the unlabeled image into the relevant topic, from which the more accurate annotation will be obtained by reducing the bad influence of irrelevant images. The experiments on the ECCV 2002 [3] and NUS-WIDE [34] benchmark show that our method outperforms state-of-the-art annotation models.
机译:基于生成模型的图像标注方法具有良好的标注性能。然而,由于“语义间隙”的问题,这些方法总是遭受具有相似视觉特征但语义不同的图像的困扰。通过使用判别模型将这些图像与语义相关的图像分离似乎是有希望的,因为它们显示了出色的泛化性能。为了获得生成性和区分性方法的好处,本文提出了一种新颖的图像标注方法,该方法通过未标记图像附近的局部判别主题将生成性和区分性模型相结合。奇异值分解(SVD)用于将邻域图像根据其语义标签分组为不同主题。语义相关的图像和无关的图像始终分配给不同的主题。通过利用不同主题之间的判别信息,应用支持向量机(SVM)将未标记图像分类为相关主题,从而通过减少无关图像的不良影响而获得更准确的注释。在ECCV 2002 [3]和NUS-WIDE [34]基准上进行的实验表明,我们的方法优于最新的注释模型。

著录项

  • 来源
    《Neurocomputing》 |2017年第may2期|48-55|共8页
  • 作者

    Ji Ping; Gao Xianhe; Hu Xueyou;

  • 作者单位

    Hefei Univ, Dept Elect & Elect Engn, Hefei 230601, Peoples R China;

    Hefei Univ, Dept Elect & Elect Engn, Hefei 230601, Peoples R China;

    Hefei Univ, Dept Elect & Elect Engn, Hefei 230601, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image annotation; Multimedia; Content Analysis; Discriminant model;

    机译:图像标注;多媒体;内容分析;判别模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号