首页> 外文期刊>Neurocomputing >A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
【24h】

A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm

机译:基于广义回归神经网络的递减步果蝇优化算法的短期电力负荷预测模型

获取原文
获取原文并翻译 | 示例

摘要

Short term power load forecasting plays an important role in the security of power system. In the past few years, application of artificial neural network (ANN) for short-term load forecasting (STLF) has become a research hotspots. Generalized regression neural network (GRNN) has been proved to be suitable for solving the nonlinear problems. And according to the historical load curve, it can be known that STLF is a non-linear problem. Thus, the GRNN was used for STLF in this paper. However, the value of spread parameter a determines the performance of the GRNN. The fruit fly optimization algorithm with decreasing step size (SFOA) is introduced to select an appropriate spread parameter a. Combined with the weather factors and the periodicity of shortterm load, an effective STLF model based on the GRNN with decreasing step FOA was proposed. Performance of the proposed SFOA-GRNN model is compared with other ANN on the basis of prediction error.
机译:短期电力负荷预测在电力系统安全中起着重要作用。近年来,人工神经网络(ANN)在短期负荷预测(STLF)中的应用已成为研究热点。事实证明,广义回归神经网络(GRNN)适用于解决非线性问题。根据历史负荷曲线,可以知道STLF是一个非线性问题。因此,本文将GRNN用于STLF。但是,扩展参数a的值决定了GRNN的性能。引入步长减小的果蝇优化算法(SFOA),以选择合适的传播参数a。结合天气因素和短期负荷的周期性,提出了一种基于GRNN的递减步长FOA的有效STLF模型。在预测误差的基础上,将提出的SFOA-GRNN模型的性能与其他ANN进行比较。

著录项

  • 来源
    《Neurocomputing》 |2017年第19期|24-31|共8页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan, Peoples R China|Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan, Peoples R China|Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan, Peoples R China|Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China;

    Texas A&M Univ Qatar, Doha 5825, Qatar;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Short term power load forecasting; Generalized regression neural network; Fruit fly optimization algorithm; Decreasing step size;

    机译:短期电力负荷预测;广义回归神经网络;果蝇优化算法;步长减小;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号