首页> 外文期刊>Neurocomputing >Input-to-state stability of memristor-based complex-valued neural networks with time delays
【24h】

Input-to-state stability of memristor-based complex-valued neural networks with time delays

机译:具有忆阻器的基于忆阻器的复值神经网络的输入状态稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper concentrates on the input-to-state stability problem for a class of memristor-based complex-valued neural networks with time delays. Different from the input-to-state stability criteria of real-valued neural networks, several new stability criteria of complex-valued neural networks are proposed by utilizing the Lyapunov function method, the differential inclusions theory and set-valued maps. The obtained results generalize some existing literature about real-valued neural networks as special conditions. A numerical example is presented to demonstrate the effectiveness of our theoretical results.
机译:本文着重研究一类基于忆阻器的具有时滞的复值神经网络的输入到状态稳定性问题。与实值神经网络的输入到状态稳定性准则不同,利用利雅普诺夫函数法,微分包含理论和集值映射,提出了几种新的复值神经网络稳定性准则。获得的结果概括了一些关于实值神经网络作为特殊条件的现有文献。数值例子表明了我们理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号