首页> 外文期刊>Neurocomputing >Supervised learning in spiking, neural networks with noise-threshold
【24h】

Supervised learning in spiking, neural networks with noise-threshold

机译:具有噪声阈值的尖峰神经网络中的监督学习

获取原文
获取原文并翻译 | 示例

摘要

With a similar capability of processing spikes as biological neural systems, networks of spiking neurons are expected to achieve a performance similar to that of living brains. Despite the achievement of spiking neuron based applications, most of them assume noise-free condition for learning and testing. This assumption, though fairly general, ignores the fact that noise widely exists in spiking neural networks (SNNs) and the neural response can be significantly disturbed by noise. Therefore, how to deal with noise is an important issue in the applications of SNNs. Here, by analyzing strategies employed to make spiking neurons robust to noise, also inspired by biological neurons, we propose a strategy that train spiking neurons with a dynamic firing threshold named noise-threshold. The noise-threshold can be applied by the existing supervised learning methods to improve the noise tolerance of them. Experimental results show that, with a combination of noise-threshold, the anti-noise capability of the existing supervised learning methods improves significantly, and the trained neuron can precisely and reliably reproduce target sequences of spikes even under highly noisy conditions. More importantly, the SNNs-based computational model equipped with a noise-threshold is more robust and can achieve a good performance even with different types of noise. Therefore, the noise-threshold is significant to practical applications and theoretical researches of SNNs.
机译:具有与生物神经系统类似的处理尖峰的能力,尖峰神经元网络有望实现与活脑相似的性能。尽管基于神经元的应用程序实现了突飞猛进,但大多数应用程序仍假定无噪声条件用于学习和测试。这个假设虽然相当笼统,但却忽略了尖峰神经网络(SNN)中广泛存在噪声且噪声会严重干扰神经反应这一事实。因此,如何处理噪声是SNN应用中的重要问题。在这里,通过分析使尖峰神经元对噪声具有鲁棒性的策略(也受到生物神经元的启发),我们提出了一种以动态触发阈值(称为噪声阈值)训练尖峰神经元的策略。噪声阈值可以通过现有的监督学习方法来应用,以提高它们的噪声容忍度。实验结果表明,结合噪声阈值,现有有监督学习方法的抗噪能力得到了显着提高,即使在高噪声条件下,受过训练的神经元也可以精确可靠地重现尖峰的目标序列。更重要的是,配备了噪声阈值的基于SNN的计算模型更加健壮,即使存在不同类型的噪声也可以实现良好的性能。因此,噪声阈值对神经网络的实际应用和理论研究具有重要意义。

著录项

  • 来源
    《Neurocomputing》 |2017年第5期|333-349|共17页
  • 作者单位

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China;

    Potsdam Inst Climate Impact Res PIK, D-14473 Potsdam, Germany|Humboldt Univ, Dept Phys, D-12489 Berlin, Germany|Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spiking neurons; Noise-threshold; Supervised learning; Spiking neural networks (SNNs); Anti-noise capability;

    机译:尖峰神经元;噪声阈值;监督学习;尖峰神经网络(SNN);抗噪声能力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号