首页> 外文期刊>Neurocomputing >Deep multi-level networks with multi-task learning for saliency detection
【24h】

Deep multi-level networks with multi-task learning for saliency detection

机译:具有多任务学习功能的深度多层次网络,用于显着性检测

获取原文
获取原文并翻译 | 示例

摘要

Category-independent region proposals have been utilized for salient objects detection in recent works. However, these works may fail when the extracted proposals have poor overlap with salient objects. In this paper, we demonstrate segment-level saliency prediction can provide these methods with complementary information to improve detection results. In addition, classification loss (i.e., softmax) can distinguish positive samples from negative ones and similarity loss (i.e., triplet) can enlarge the contrast difference between samples with different class labels. We propose a joint optimization of the two losses to further promote the performance. Finally, a multi-layer cellular automata model is incorporated to generate the final saliency map with fine shape boundary and object-level highlighting. The proposed method has achieved state-of-the-art results on four benchmark datasets. (C) 2018 Elsevier B.V. All rights reserved.
机译:在最近的工作中,与类别无关的区域建议已用于显着物体的检测。但是,当提取的提案与重要对象的重叠性较差时,这些工作可能会失败。在本文中,我们证明了段级显着性预测可以为这些方法提供补充信息,以改善检测结果。此外,分类损失(即softmax)可以将阳性样品与阴性样品区分开,而相似度损失(即三重态)可以扩大具有不同类别标签的样品之间的对比度差异。我们建议对两个损失进行联合优化,以进一步提高性能。最后,结合多层细胞自动机模型以生成具有精细形状边界和对象级别突出显示的最终显着图。所提出的方法已经在四个基准数据集上取得了最新的结果。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第27期|229-238|共10页
  • 作者单位

    Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116023, Peoples R China;

    Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116023, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Saliency detection; Convolutional neural networks; Multi-task learning;

    机译:显着性检测;卷积神经网络;多任务学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号