首页> 外文期刊>Neurocomputing >An external learning assisted self-examples learning for image super-resolution
【24h】

An external learning assisted self-examples learning for image super-resolution

机译:外部学习辅助自我范例学习,实现图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

The current self-examples learning is a promising direction for image super-resolution (SR) task, but still has several main drawbacks: (i) less ability of adapting the neighboring and non-local information for self-regression function learning; (ii) less priors from the training data generated by recursively down-sampling the low resolution (LR) input. In this work, we propose an external learning assisted self-examples learning SR (Exter-SESR) framework to alleviate these issues, which is conducted in a two-stage procedure. The first part is a hybrid neural network (HNN) that takes large LR image patches as input and extracts compact features from external dataset. The learned features can offer better neighboring and non-local priors. Meanwhile, a part of HNN is able to estimate an initial high resolution (HR) image to address the second issue, since the new training data from the initial HR images does not only preserve the original prior, but also involve the extra ones from the external data. The second part is to further refine the SR output using a SESR based model. In addition, we analyze the effects of different self-examples models on the SR performance and find that Gaussian process regression (GPR) achieves superior performance. Experimental results on the benchmark show that our proposed method outperforms the existing SESR methods by a large margin in terms of both quantitative and qualitative measurements. (C) 2018 Elsevier B.V. All rights reserved.
机译:当前的自我榜样学习是图像超分辨率(SR)任务的一个有前途的方向,但仍然存在几个主要缺点:(i)适应相邻和非本地信息进行自我回归函数学习的能力较低; (ii)通过递归对低分辨率(LR)输入进行递减采样而生成的训练数据获得的先验次数减少。在这项工作中,我们提出了一个外部学习辅助的自我榜样学习SR(Exter-SESR)框架来缓解这些问题,该过程分两个阶段进行。第一部分是一个混合神经网络(HNN),它将大型LR图像块作为输入并从外部数据集中提取紧凑特征。所学习的功能可以提供更好的相邻和非本地先验。同时,HNN的一部分能够估计初始高分辨率(HR)图像以解决第二个问题,因为来自初始HR图像的新训练数据不仅保留了原始先验图像,而且还包含了来自原始HR图像的额外训练数据。外部数据。第二部分是使用基于SESR的模型进一步完善SR输出。此外,我们分析了不同的自我榜样模型对SR性能的影响,发现高斯过程回归(GPR)可以实现出色的性能。在基准上的实验结果表明,我们提出的方法在定量和定性测量方面都大大优于现有的SESR方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第27期|107-119|共13页
  • 作者单位

    Xidian Univ, Int Res Ctr Intelligent Percept & Computat,Sch Ar, Joint Int Res Lab Intelligent Percept & Computat, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Int Res Ctr Intelligent Percept & Computat,Sch Ar, Joint Int Res Lab Intelligent Percept & Computat, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Int Res Ctr Intelligent Percept & Computat,Sch Ar, Joint Int Res Lab Intelligent Percept & Computat, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, Int Res Ctr Intelligent Percept & Computat,Sch Ar, Joint Int Res Lab Intelligent Percept & Computat, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Self-examples learning; External learning; Hybrid neural network; Gaussian process regression;

    机译:自我榜样学习;外部学习;混合神经网络;高斯过程回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号