首页> 外文期刊>IEEE Transactions on Image Processing >How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution
【24h】

How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution

机译:低秩矩阵分解如何帮助内部和外部学习获得超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Wisely utilizing the internal and external learning methods is a new challenge in super-resolution problem. To address this issue, we analyze the attributes of two methodologies and find two observations of their recovered details: 1) they are complementary in both feature space and image plane and 2) they distribute sparsely in the spatial space. These inspire us to propose a low-rank solution which effectively integrates two learning methods and then achieves a superior result. To fit this solution, the internal learning method and the external learning method are tailored to produce multiple preliminary results. Our theoretical analysis and experiment prove that the proposed low-rank solution does not require massive inputs to guarantee the performance, and thereby simplifying the design of two learning methods for the solution. Intensive experiments show the proposed solution improves the single learning method in both qualitative and quantitative assessments. Surprisingly, it shows more superior capability on noisy images and outperforms state-of-the-art methods.
机译:明智地利用内部和外部学习方法是超分辨率问题中的新挑战。为了解决这个问题,我们分析了两种方法的属性,并对它们的恢复细节进行了两次观察:1)它们在特征空间和图像平面上是互补的; 2)在空间空间上稀疏分布。这些启发我们提出了一个低级解决方案,该解决方案有效地整合了两种学习方法,然后取得了优异的成绩。为了适合该解决方案,内部学习方法和外部学习方法经过了调整,可以产生多个初步结果。我们的理论分析和实验证明,所提出的低等级解决方案不需要大量输入即可保证性能,从而简化了该解决方案的两种学习方法的设计。大量实验表明,所提出的解决方案在定性和定量评估方面均改进了单一学习方法。令人惊讶的是,它在嘈杂的图像上显示了更出色的功能,并且胜过了最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号