首页> 外文期刊>Neurocomputing >Robust multi-view data clustering with multi-view capped-norm K-means
【24h】

Robust multi-view data clustering with multi-view capped-norm K-means

机译:具有多视图上限范数K均值的稳健的多视图数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Real-world data sets are often comprised of multiple representations or views which provide different and complementary aspects of information. Multi-view clustering is an important approach to analyze multi-view data in a unsupervised way. Previous studies have shown that better clustering accuracy can be achieved using integrated information from all the views rather than just relying on each view individually. That is, the hidden patterns in data can be better explored by discovering the common latent structure shared by multiple views. However, traditional multi-view clustering methods are usually sensitive to noises and outliers, which greatly impair the clustering performance in practical problems. Furthermore, existing multi-view clustering methods, e.g. graph-based methods, are with high computational complexity due to the kernel/affinity matrix construction or the eigendecomposition. To address these problems, we propose a novel robust multi-view clustering method to integrate heterogeneous representations of data. To make our method robust to the noises and outliers, especially the extreme data outliers, we utilize the capped-norm loss as the objective. The proposed method is of low complexity, and in the same level as the classic K-means algorithm, which is a major advantage for unsupervised learning. We derive a new efficient optimization algorithm to solve the multi-view clustering problem. Finally, extensive experiments on benchmark data sets show that our proposed method consistently outperforms the state-of-the-art clustering methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:现实世界的数据集通常由提供不同且互补的信息方面的多种表示或视图组成。多视图聚类是一种以无监督方式分析多视图数据的重要方法。先前的研究表明,使用来自所有视图的集成信息,而不仅仅是单独依赖每个视图,可以实现更好的聚类精度。也就是说,通过发现多个视图共享的共同潜在结构,可以更好地探索数据中的隐藏模式。然而,传统的多视图聚类方法通常对噪声和离群值敏感,这在实际问题中极大地损害了聚类性能。此外,现有的多视图聚类方法例如由于核/亲和矩阵构造或特征分解,基于图的方法具有很高的计算复杂性。为了解决这些问题,我们提出了一种新颖的鲁棒的多视图聚类方法来集成数据的异构表示。为了使我们的方法对噪声和异常值(尤其是极端数据异常值)具有鲁棒性,我们以上限范数损失为目标。该方法具有较低的复杂度,并且与经典的K-means算法处于同一水平,这是无监督学习的主要优势。我们推导了一种新的高效优化算法来解决多视图聚类问题。最后,对基准数据集的大量实验表明,我们提出的方法始终优于最新的聚类方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第15期|197-208|共12页
  • 作者单位

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, SMILE Lab, Chengdu 610031, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, SMILE Lab, Chengdu 610031, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, SMILE Lab, Chengdu 610031, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view clustering; Capped-norm; Robust clustering;

    机译:多视图聚类上限范数鲁棒聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号