首页> 外文期刊>Knowledge-Based Systems >Robust multi-view k-means clustering with outlier removal
【24h】

Robust multi-view k-means clustering with outlier removal

机译:强大的多视图k-means聚类,具有异常删除

获取原文
获取原文并翻译 | 示例

摘要

Contemporary datasets are often comprised of multiple views of data, which provide complete and complementary information in different views, and multi-view clustering is one of the most crucial techniques in multi-view data analysis. However, traditional multi-view clustering methods are sensitive to noises and outliers, suffering from severe performance degradation when the dataset contains many outliers. Moreover, the commonly used multi-view clustering methods are restricted by high time complexity. To address these problems, we propose a robust multi-view k-means algorithm with outlier detection, i.e., Multi-View Clustering with Outlier Removal (MVCOR). This method is designed to remove the outliers and thus boosts the clustering performance on multi-view data with low time complexity. By defining two types of outliers, MVCOR uses the well-defined outlier removal strategy to categorize all the outliers into two specific clusters and performs robust clustering on the clean data at the same time. This strategy significantly improves the clustering performance as well as the model robustness, making MVCOR a more practical approach for real-world scenarios. Besides, the proposed model is efficiently optimized by a well-designed alternating minimization algorithm which is strictly proved to be convergent. Extensive experiments on both synthetic and real-world datasets demonstrate that MVCOR consistently outperforms the related clustering methods on clustering performance as well as robustness to outliers, and achieves comparable performance to the state-of-the-art multi-view outlier detection methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:当代数据集通常由多个数据视图组成,它在不同视图中提供完整和互补信息,而多视图群集是多视图数据分析中最重要的技术之一。但是,传统的多视图聚类方法对噪音和异常值敏感,当数据集包含许多异常值时,遭受严重的性能下降。此外,常用的多视图聚类方法受到高时间复杂度的限制。为了解决这些问题,我们提出了一种具有异常值检测的强大的多视图K均值算法,即,具有异常删除(MVCOR)的多视图群集。此方法旨在删除异常值,从而提高了在多视图数据上的聚类性能,具有低时间复杂度。通过定义两种类型的异常值,MVCOR使用明确定义的异常删除策略来将所有异常值分为两个特定的群集,并同时在清洁数据上执行强大的群集。该策略显着提高了聚类性能以及模型稳健性,使MVCOR成为现实世界方案的更实用的方法。此外,所提出的模型通过精心设计的交替最小化算法有效地优化,这被严格证明是收敛的。对合成和现实世界数据集的广泛实验表明,MVCOR始终如一地优于聚类性能的相关聚类方法以及对异常值的鲁棒性,并实现了与最先进的多视图异常检测方法的可比性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第27期|106518.1-106518.11|共11页
  • 作者单位

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China|Sun Yat Sen Univ Natl Engn Res Ctr Digital Life Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China|Sun Yat Sen Univ Natl Engn Res Ctr Digital Life Guangzhou Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view clustering; Robust clustering; K-means; Outlier detection;

    机译:多视图聚类;鲁棒聚类;K-means;异常检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号