首页> 外文期刊>Neurocomputing >High density cell tracking with accurate centroid detections and active area-based tracklet clustering
【24h】

High density cell tracking with accurate centroid detections and active area-based tracklet clustering

机译:高密度细胞跟踪,精确的质心检测和基于活动区域的小波聚类

获取原文
获取原文并翻译 | 示例

摘要

Accurate cell tracking and lineage construction under microscopy has played an important role in analyzing cell migration, mitosis and proliferation. In the last decade, this labor-intensive manual analysis was gradually replaced by automated cell tracking methods; however, they are often limited to cells with certain morphologies or staining. In this paper, we propose a novel hierarchical tracking framework (Hift), which does not have these limitations. To keep the robustness and feasibility with different cell densities, we concluded several cell motion events into different tracking stages, including entry, exit, division, merge, fast motion, etc. And the fusion of global and local information is applied in both detection and tracking modules, to ensure the flexibility and expansibility of cell detection. To get a full-time cell lineage, we first introduce a conservative distance limit to obtain tracklets with high reliability in the tracking stage. Then motion events are recognized with local information for further corrections. At last, trajectories are linked and completed based on an active search area estimated by the established tracklets. The hierarchical framework designed in Hift enhances the ability of cell detection and tracking by combining the global assignment and local optimization in spatial-temporal dimension. Experimental results of Hift on three large-scale datasets with high cell densities and four sparse datasets demonstrate its efficacy. Hift is available at: http://www.csbio.sjtu.edu.cn/bioinf/ Hift/. (C) 2018 Elsevier B.V. All rights reserved.
机译:显微镜下准确的细胞追踪和谱系构建在分析细胞迁移,有丝分裂和增殖中发挥了重要作用。在过去的十年中,这种劳动密集型的手动分析逐渐被自动细胞跟踪方法所取代;然而,它们通常限于具有某些形态或染色的细胞。在本文中,我们提出了一种新颖的分层跟踪框架(Hift),它没有这些限制。为了在不同的细胞密度下保持鲁棒性和可行性,我们将几个细胞运动事件总结为不同的跟踪阶段,包括进入,退出,分裂,合并,快速运动等。全局和局部信息的融合应用于检测和检测中。跟踪模块,以确保细胞检测的灵活性和可扩展性。为了获得全职细胞谱系,我们首先引入保守的距离限制,以在跟踪阶段获得具有高可靠性的小轨迹。然后,使用本地信息识别运动事件,以进行进一步校正。最后,基于已建立的轨迹跟踪估计的活动搜索区域,链接并完成轨迹。 Hift中设计的分层框架通过在时空维度上结合全局分配和局部优化来增强细胞检测和跟踪的能力。 Hift在三个具有高细胞密度的大型数据集和四个稀疏数据集上的实验结果证明了其功效。可以在以下网址找到Hift:http://www.csbio.sjtu.edu.cn/bioinf/ Hift /。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号