首页> 外文期刊>Neurocomputing >Data-driven reconstruction method for electrical capacitance tomography
【24h】

Data-driven reconstruction method for electrical capacitance tomography

机译:电容层析成像的数据驱动重建方法

获取原文
获取原文并翻译 | 示例

摘要

The appealing superiorities, including high-speed data acquisition, nonintrusive measurement, low cost, high safety and visual presentation, lead to the success of the electrical capacitance tomography (ECT) technique in the monitoring of industrial processes. High-accuracy tomographic images play a crucial role in the reliability of the ECT measurement results, which provide the powerful scientific evidences for investigating the complicated mechanisms behind the behaviors of the imaging objects (IOs). Beyond the existing numerical algorithms that are developed for the solution of the inverse problem in the ECT area, a data-driven two-stage reconstruction method is proposed to improve the reconstruction quality (RQ) in this paper. At the first stage, i.e., the learning stage, the regularized extreme learning machine (RELM) model solved by the split Bregman technique is developed to extract the mapping between the tomographic images reconstructed by the some algorithm and the true images according to a set of training samples. At the second stage, i.e., the prediction stage, a new IO is reconstructed by the same algorithm used in computing training samples, and then the imaging result is considered as an input of the trained RELM model to predict the final result. The performances of the proposed reconstruction method are compared and evaluated by the means of the numerical simulation approach using the clean and noisy capacitance data with different noise levels (NLs). Quantitative and qualitative comparison results validate the practicability and effectiveness of the proposed data-driven reconstruction method. Research findings provide a new insight for the improvement of the reconstruction accuracy and robustness in the ECT area. (C) 2017 Elsevier B.V. All rights reserved.
机译:吸引人的优势包括高速数据采集,非侵入式测量,低成本,高安全性和可视化呈现,从而导致了电容层析成像(ECT)技术在工业过程监控中的成功。高精度断层图像在ECT测量结果的可靠性中起着至关重要的作用,这为调查成像对象(IO)行为背后的复杂机制提供了有力的科学依据。除了为解决ECT领域中的逆问题而开发的现有数值算法外,本文还提出了一种数据驱动的两阶段重构方法,以提高重构质量(RQ)。在第一个阶段,即学习阶段,开发了由分裂Bregman技术求解的正则极限学习机(RELM)模型,以根据一组算法提取通过某些算法重建的断层图像与真实图像之间的映射。训练样本。在第二阶段,即预测阶段,通过用于计算训练样本的相同算法重建新的IO,然后将成像结果视为训练后的RELM模型的输入,以预测最终结果。通过数值模拟的方法,使用具有不同噪声水平(NLs)的干净且有噪声的电容数据,比较并评估了所提出的重建方法的性能。定量和定性的比较结果验证了该数据驱动的重建方法的实用性和有效性。研究结果为ECT领域重建精度和鲁棒性的提高提供了新的见识。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第17期|333-345|共13页
  • 作者单位

    North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China;

    North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical capacitance tomography; Image reconstruction; Extreme learning machine; Inverse problem; Reconstruction method;

    机译:电容层析成像;图像重建;极限学习机;逆问题;重建方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号