首页> 外文期刊>IEEE transactions on industrial informatics >Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography
【24h】

Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography

机译:电容断层扫描的大数据驱动上下文处理方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach to analyzing measurement records from industrial processes. The proposed methodology is based on the model of contextual processing and uses big data from experimental process tomography datasets. Electrical capacitance tomography is used for monitoring noninvasive flow and for data acquisition. The measurement data are collected, stored, and processed to identify process regimes and process threats. A specific physical modification was introduced into the pneumatic conveying flow rig in order to study flow behavior under extreme conditions, extending the available knowledge base. A support vector machine was applied for data classification. This study illustrates how contextual processing can facilitate data interpretation and opens the way for the development of methods for detecting pre-emergency flow patterns.
机译:本文介绍了分析工业过程测量记录的新方法。所提出的方法基于上下文处理的模型,并使用实验过程断层扫描数据集的大数据。电容断层扫描用于监测非侵入性流动和数据采集。收集,存储和处理测量数据以识别过程制度和过程威胁。将特定的物理改性引入气动输送流量钻机中,以便在极端条件下研究流动行为,扩展可用知识库。支持支持向量机用于数据分类。该研究说明了语境处理如何促进数据解释,并开启用于检测应急流动模式的方法的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号