首页> 外文期刊>Neurocomputing >A band selection method for airborne hyperspectral image based on chaotic binary coded gravitational search algorithm
【24h】

A band selection method for airborne hyperspectral image based on chaotic binary coded gravitational search algorithm

机译:基于混沌二进制编码重力搜索算法的机载高光谱图像波段选择方法

获取原文
获取原文并翻译 | 示例

摘要

Band selection is one of the most important topics in hyperspectral image classification for irrelevant band information and the high correlation between the adjacent bands. The main concern is to obtain the compact and effective bands to classify the image with the least impact for the classification accuracy. In general, band selection could be seen as a combinatorial optimization problem through defining an objective function based on the number of bands and classification accuracy. Therefore, in the paper, a novel band selection method based on a chaotic binary coded gravitational search algorithm (CBGSA) is proposed to reduce the dimensionality of airborne hyperspectral images. The proposed method is also compared with that of genetic algorithm (GA), binary coded particle swarm optimization (BPSO) algorithm, binary coded differential evolution (BDE) algorithm and binary coded cuckoo search (BCS) algorithm on some airborne hyperspectral images; furthermore, it is also compared with some other existing techniques such as Relief-F algorithm, minimum Redundancy Maximum Relevance (mRMR) criterion, and the optimum index (OI) criterion for a comprehensive comparison. Experimental results display that the proposed method is robust, adaptive and might be applied for practical work of airborne hyperspectral image classification. (C) 2017 Elsevier B.V. All rights reserved.
机译:对于不相关的波段信息和相邻波段之间的高度相关性,波段选择是高光谱图像分类中最重要的主题之一。主要关注的是获得紧凑有效的带区以对图像进行分类,而对分类精度的影响最小。通常,通过基于波段的数量和分类精度定义目标函数,可以将波段选择视为组合优化问题。因此,本文提出了一种基于混沌二进制编码重力搜索算法(CBGSA)的频带选择方法,以降低机载高光谱图像的维数。将该方法与遗传算法(GA),二进制编码粒子群优化算法(BPSO),二进制编码差分进化算法(BDE)和杜鹃布谷鸟搜索算法(BCS)在飞机高光谱图像上进行了比较。此外,还与其他现有技术(例如Relief-F算法,最小冗余最大相关性(mRMR)标准和最佳索引(OI)标准)进行了比较,以进行全面比较。实验结果表明,所提出的方法是鲁棒的,自适应的,可用于机载高光谱图像分类的实际工作。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号