首页> 外文学位 >MDL-based band selection and adaptive penalties for hyperspectral image segmentation.
【24h】

MDL-based band selection and adaptive penalties for hyperspectral image segmentation.

机译:基于MDL的波段选择和高光谱图像分割的自适应惩罚。

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation is the process of assigning each pixel in an image to a class, such that all pixels of a given class are similar, but the statistics of each class differ. Markov random fields (MRF) are widely used as a spatial prior, so the segmentation will have a regular spatial structure. This dissertation presents feature-extraction and selection algorithms and an adaptive penalty parameter-estimation procedure to be used in MRF segmentation.; Hyperspectral images are multispectral images with such a large number of bands that each pixel's data vector approximates its continuous spectrum. These images are remarkably rich in information, but they also have severe redundancies and are extremely large. Therefore, we combine feature extraction and selection with image segmentation in the following five-step procedure for hyperspectral images: (1) a global wavelet feature-extraction and selection algorithm inexpensively removes many redundant bands, (2) principal components is used on 64 x 80-pixel blocks to refine feature extraction and selection locally, (3) blockwise MRF segmentation with cluster splitting finds the local class set, (4) merge the blocks and their classes, (5) resegment to remove block artifacts. The algorithm generally performs well on real and synthetic data, except that Step 4 is needlessly complicated and makes some improper merges. Several methods for correcting this are suggested.; All MRF image-segmentation criteria as in Step 3 have spatial-penalty parameters that must be chosen. An adaptive algorithm that chooses the penalty parameters to maximize the pseudo-likelihood (PL) of the current image was developed by Lakshmanan and Derin, but it uses a costly simulated-annealing algorithm. We use a decoupling argument to find simple, closed-form solutions for the PL penalty parameters of a globally adaptive (GA) MRF criterion with boundary and region penalties. A theoretical analysis shows that GA penalties only minimize the error rate if the scene has certain weak symmetry properties. For example, all boundaries must be equally rough. This is not always satisfied in practice, so we also introduce an MRF with class-pair-conditional (CP) boundary penalties. We segment both synthetic and real images to validate the theoretical analysis and illustrate the capabilities and limitations inherent to the PL approximation.
机译:图像分割是将图像中的每个像素分配给一个类别的过程,以使给定类别的所有像素都相似,但是每个类别的统计信息不同。马尔可夫随机场(MRF)被广泛用作空间先验,因此分割将具有规则的空间结构。提出了特征提取和选择算法以及自适应惩罚参数估计算法。高光谱图像是具有大量波段的多光谱图像,每个像素的数据向量都近似于其连续光谱。这些图像的信息非常丰富,但是它们也具有严重的冗余并且非常大。因此,我们在以下针对高光谱图像的五步过程中将特征提取和选择与图像分割相结合:(1)全局小波特征提取和选择算法廉价地去除了许多冗余谱带,(2)主成分用于64 x 80个像素的块可在本地细化特征提取和选择;(3)具有聚类拆分的按块MRF分割可找到局部类集;(4)合并块及其类;(5)重新分割以去除块伪影。该算法通常在真实和合成数据上表现良好,只是步骤4不必要地复杂且合并不当。建议了几种纠正方法。第3步中的所有MRF图像分割标准都有必须选择的空间惩罚参数。 Lakshmanan和Derin开发了一种自适应算法,该算法选择惩罚参数以最大化当前图像的伪似然(PL),但它使用了昂贵的模拟退火算法。我们使用解耦参数为边界和区域罚分的全局自适应(GA)MRF准则的PL罚分参数找到简单的闭式解。理论分析表明,只有当场景具有某些弱对称性时,GA惩罚才会使错误率最小化。例如,所有边界都必须同样粗糙。这在实践中并不总是可以满足的,因此我们还引入了带有类对条件(CP)边界惩罚的MRF。我们对合成图像和真实图像都进行了分割,以验证理论分析并说明PL近似所固有的功能和局限性。

著录项

  • 作者

    Kerfoot, Ian B.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号